
AD-A272 514

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ON A PROPOSED SYMBOLIC DYNAMICS
FOR THE HENON MAP

by

Antonio Pietro Fontana

June 1993 0

Thesis Advisor: Jeffery J. Leader

Approved for public release; distribution is unlimited

93-27826
S1111 11 1111 111 1u11 1111 111 11 ll l

Best
Available

Copy

REPORT DOCUMENTATION PAGE for 0j~~v

1 044 N* 004.01
.. W~Mstr' Th0si orI0Zfl oc-q 3~ o,,

On9n0") a114 Proose SybWcDnmc o h do

. PGERO INGY ORGNIETONL NAMEv(San) A.REOR DATE3.RPORTS TYP AN PAESRFOVRMIGORAIDO

4. TITE ANDSUBTITE SREPODIT NUMBER-

Naval Postgraduate SchoolREOTNM
R

Monterey, CA 93943-5000

9. SPONSORING ; MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION; AVAILABILITY STATEMENT 12b CPSTRIBUTION CODE

Approved for public release, distribution is unlimited

13. ABSTRACT (Maxilmum 200 words)

The utility of a computationtally simple vet cryptologically robust rule for generating
pseudorandom bitstreams cannot be overstated. In most applications we strive to detect and avoid
chaotic behavior; here we embrace a particular chaotic discrete dynaaucal system to exploit its use as
a dnver for a pseudorandom number generator. The map from the Hdnon attractor to the binary0
domain (0, 1 } proposed by Forrd /Heymnan has been tested cryptologically and statistically with mixed
results. In this thesis we mathematically evaluate this symbolic dynamics scheme to Investigate more
rigorously its utility as a plausible pseudorandom number generator. Specifically, we demonstrate how
the property of being one-to-one holds, but that the property of being onto does not.

14. SUBJECT TERMS IS. NUMBER OF PAGES0

Symbolic Dynamics, Chaos, Pseudorandom number generator, Hdnon 169
16. PRICE CODE

17. SECURITY CLASSIFICATION 1S. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
Of REPORT Of THIS PAGE OF AISTRA6T

Unclassified Unclassified Unclassified ULi

Approved for public release; distribution is unlimited. I
On a Proposed Symbolic Dynamics 0

for the Henon Map 4

by

Antonio Pietro Fontana
Lieutenant, United States Navy

B.S., United States Merchant Marine Academy

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL

June 1993 •

Author: 12 '? Y") Z ' 4•1)7 %7f _

Antonio P. Fontana

Approved by: '* - _-"

Jeffery J. Leader

Is or Fischer

Richard Franke

Department of Mathematics

•0

ABSTRACT 0

The utility of a computationally simple yet

cr-yptologically robust rule for generating pseudorandom 0

bitstreams cannot be overstated. In most applications we

strive to detect and avoid chaotic behavior; here we embrace

a particular chaotic discrete dynamical system to exploit its •

use as a driver for a pseudorandom number generator. The map

from the H~non attractor to the binary domain (0,11 proposed

by Forr6/Heyman has been tested cryptologically and 0

statistically with mixed results. In this thesis we

mathematically evaluate this symbolic dynamics scheme and

investigate more rigorously its utility as a pseudorandom 0

number generator. Specifically, we demonstrate how the

property of being one-to-one holds, but that the property of

being onto does not. Accesion For 0

NTIS CRA&M
DTIC TAB
Unannounced

DTiC QTUALITY INSRECTED 5 Justification

By . ..

Distribution I

Availability Codes

Avail and/or 0
Dist Special

WI

unl ulmnmm.-,-- umamnm mnumn l Imnm 0

TABLZ OF CONTZNTS

. INTRODUCTION..........

A. HENON'S DISCRETE DYNAMICAL SYSTEM

B. NATURE AND STRUCTURE OF THE HENON ATTRACTOR .

C. CHAOS

17. THE SHADOWING LEMMA - TRUSTING THE COMPUTER 16

-T PSEUDORANDOMNESS FROM CHAOS ..

A. LINKING CHAOS TO THE BINARY DOMAIN

B. RECENT STUDY OF FORRE'S SYMBOLIC DYNAMICS .27

U. EXPERIMENTAL EVIDENCE FOR ONE-TO-ONE . .

A. A COMPUTER PARADIGM

B. PUTTING THE MODEL TO WORK

IV. ONTO 5

A. ONTO PROPERTY

B. ANALYTIC PROOF OF UNREALIZABLE FOUR-TUPLE . . . 62

"7 CONCLUSIONS.. 74

A. RUNS ANOMALY-FATAL FACTOR OR LIMITING FACTOR? 74

B. FUTURE WORK FOR AN IMPROVED SYMBOLIC DYNAMICS 75

APPENDIX A: MAIN PROGRAMS

iv

S. •• •• 0@

APPENDIX B: TYPICAL LEFT QUADRILATERAL RUN 121

APPENDIX C: 6 TO 16-TUPLE DATA 134

APPENDIX D: AN UNREALIZABLE 5-TUPLE

APPENDIX E: SUBORDINATE PROGRAMS

0
"LST OF REFERENCES 16C:

INITIAL DISTRIBUTION LIST 162
0

* 0

0

0

0

ACKOWLEDGEMNRT •

This thesis is dedicated to my thesis advisor and second reader, 0

two men whose genuine love for mathematics has inspired me greatly,

and to my wife, Kelly. Without their efforts this document wcuinI

not nave been possible. 0

0

*

0

0

0

vi

0

*000 0 0 0 0 0

I. INTRODUCTION 4
A. HtNON'S DISCRICT DYNAMICAL SYSTEM

Michel Henon (1931-) was a French mathematician and

astronomer who was interested in modeling astronomical

behavior. H~non learned how the meteorologist-mathematic:an

Edward N. Lorenz (1917-) had developed a three-dimensional

attractor to model the complicated dynamics of thermal

convection. An attractor is characterized by the following

definition.

DEF:NITION: Let V be a subset of R' and F: V -* R-, where

m = 1,2,3. Let A be a subset of V. Then A is an attractor of

F if:

i. A is a closed invariant subset of V under F. The set

A in R' is invariant under F: V -- R" if F(A) • A.
0

ii. There is a neighborhood U of A such that if v is mU,

F!%v) -*A as n -- ,where F_ denotes the n-fold composition of

F [Ref.l:p.147,200].

The Lorenz attractor is generated by a system of three

differential equations and relies upon integration which does

not lend itself to timely and accurate computer calculations. 0

[Ref.2] H~non sought to build a simple discrete dynamical

system that would retain the qualitative properties of the

• • • 9• • •0

continuous Lorenz system. His goal was achieved through stuiy

of the Poincar6 section of the Lorenz equations. [R.ef.3.

Thus, the H~non attractor is, to some extent, a two-

dimensional version of the Lorenz attractor. The H~non map is

the following quadratic recurrence which maps the Euclidean

plane into itself. [Ref.7]

H :R - R'

x. 1- ax- + y

y_. : bx!

0
Each point in R- has a unique image and preimage under H. The

same is true of the inverse of the H~non map. The constants

a and b are real parameters. We can write the map as a * .
transformation in the following form:

H(x,y) = (1 - ax-- + y., bx).

Understanding the dynamics of the map is easier if we
0

decompose it into the following independent transformations:

H.(x,y) = (x,y + 1 - ax-)

H (x,y) = (bx,y)

H-(x,y) = (y,x)

such that

H (xy) = H (H- (H: (x,y)))

2

Respectively the transformations cause bending, contraction

(for I b 1<1), and a reflection. [Ref.5:p.662] This stretching

and folding are analogous to the kneading or mixing common to

chaotic systems.

The parameters (a,b) control whether the system forms an 0

interestng attractor with apparent aperiodicity or an

inr-2:eresting attractor of low period. Reportedly, H6non

chose his classical parameters (a,b) = (1.4,0.3) because they 0

gave the "nicest and strangest" picture. Figure 1 shows the

computer representation of the H4non attractor for

(x_,yo)=(0,0) using 2000 points. 0

0.3.
* 0

0.2-

0.1-

0.0

-0,I

.0.3-

%-axis

Figure 1 H~non attractor

In keeping with our definition, the computer representation is

generally unaltered by the choice of (x,y,). This is true as

3

S

0 5 0 S 0 0 0 • 0 *

"long as the values tend to the attractor and the first, say,

1 terates are ignored. The first points generated by the •

map may not be close to the attractor, but the generated

c: :nnts get closer and closer t1 the invariant set.

Let x belong to the domain of a function f; x

period n if f' x = x, and is of prime period n if

xf x ,f {x; ... , f' (x) are distinct. if x has perle< n 7,en

the br ot ,x,fx (x),f-(x), ... f -x)} is a periodic orbit

[ef. :p 2 T]. n n 1, then x is said to be a fixed point.

The merit of H6non's choice of :a,b) parameters can te

found by observation of the respective bifurcation diagrams.

bifurcation diagrarm gives us information regarding t'-e

pericdc and nonperiodic orbits of a map as a parmeter is

altered. in a bifurcation diagram, the -Iert:c•i ax-s

represents iterates of the variable x as a parameter is var~eo

on the horizontal axis. [Ref.2:p.521 If we take a *.ecal

'ice at a particular parameter we get an :oez f h

attractor's structure for that parameter. In Fture e-

parameter is held fixed at 0.3 and the a-paramete-: i

from 0.2 to 1.42.

4

0 0 0 0 0 0 000 0

0.5-

_ __ ___ __ _

-00.51

0.2 0.4 0 .5 0.8 1 1.2 1.4 *.5
a-parameter

Figure 2 Bifurcation Diagram: b-parameter fixed

Notice that from about a = 0.1 to a = 0.4 we have a point * *
attractor, that is, the entire attractor consists of a single

fi-xed point. From about a = 0.4 to a = 0.9 we have a period-

two attractor; tha: is, the attractor is made up of two

points. These period-doubling bifurcations persist as the

parameter a is increased, until a critical value of

approximately a = 1.1 is reached, where we enter the chaotic

regime. Notice that H6non's classical a-parameter 1.4 lies in

such an area of wildly complicated dynamics, sometimes called

a chaotic band [Ref.6].

In Figure 3 the a-parameter is held fixed at 1.4 and the

b-parameter is varied from 0.0 to 0.32. Again, H~non's b-

5

5

• • • •• • •0

value 0.3 not surprisingly lies in an area of chaotic 4
activity.

1.5,

0 .5 .

ILI, W 4

_• r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
b-parameter

Figure 3 Bifurcation Diagram: a-parameter fixed

B. NATURE AND STRUCTURE OF THE HIWON ATTRACTOR

Because the H6non transformation is quadratic, I. s

ocssible that even relatively small (x•.y9) values can produce

an iterated sequence, or orbit, that escapes to infinity.

[Ref.4:p.664] The H6non attractor has an associated basin of

attraction of points (found numerically) which in forward

iteration are drawn to the attractor. A point in the basin of

attraction thus tends to the invariant set. The H~non

attractor also has an associated area known as the trapping

6

0S

0 0 0 0 0 0 0 0 0

region. The trapping region is a quadrilateral within the I
basin of attraction defined by the vertices:

A = (-1.33,0.42) B = (1.32,0.133)

-= i.245,-0.14) = (-1.06,-0.5)

7f x ,y) is chosen from this region, all subsequent iterates

wi41 remain in the region [Ref.5:p.664]; hence the trapping

region is invariant. Let

HA = H~non attractor

B, = Basin of attraction

TR = Trapping region.

Then, we have that

HA c TR c BA.

This relationship is shown explicitly (excluding the trapping

region) in Figure 4; the shaded region is the basin cf

attraction.

7

i, • , •• • __ ... •0

L * 0 0 0 _o_

0

Figure 4 Basin of attraction (shaded
region) and Henon attractor. This
figure is from reference 5, p.665. * I

Therefore,

i. if (x,,y 0) e TR, then (x,,y,) E TR for all n > 0. •

ii. if (x0,y.) r B, but (x0 ,y.) E TR, then (x,,y,) may not

belong to TR for n < N. However, from the description

of the basin of attraction we know that for all n 0

sufficiently large, (x.,y,) e TR.

The b-parameter, 0.3, is in the dissipative term of the 0

relation. The Jacobian of the H6non transformation is (-b),

and hence the map is dissipative when IbI < 1. (Ref.l:p.1681.

Therefore, should we iterate the entire trapping region under 0

8

the transformation for b = 0.3, this area would shrink and in

the limit tend to zero. The H~non attractor thus has zero

area. Shown symbolically,

H;, = lim,. HW(TR)

or

HA = H! (TR)

In fact, any point belonging to the trapping region can be

iterated to construct a dense orbit on HA, except the periodic

points which are countable and hence have Lebesgue measure

zero. The visual result, in the limit, is the same for any

initial ccndition (less a finite number of initial iteratoons

to assure close proximity to the attractor). Two different

points will generate different sequences but the limit set,

under the above qualification, will appear to be the same

visually. Furthermore, in general, there is no correlatc-n

between the trajectories of two different initial points,

except possibly in the first relatively few iterations should

the initial points be neighbors. (We disregard here t-e

instance where, say, trajectory 1 has common points with

trajectory 2 but for different iterates. In this case the

orbits are shifted versions of one another.) This lack cf

correlation is related to sensitive dependence on initial

conditions.

9

The H~non equations (1.1) and (1.2) (with the classical

parameters (ab)=(1.4,0.3)) may be written in one variable as:

x .. = 1 - 1 . 4 x , 2 + 0 . 3 x , .I (1 .)l

There are two fixed point solutions to the recurrence, where

Xn-1 = X = X..-. -

This occurs when (x,y) = (.6314...,.1894...) (FP2) and (x,y)

= (-1.13143393...) (FPI). The fixed points, trapping

region and H4non attractor appear in Figure 5.

0.4 ,o5ongltvrudinal Axis

0. - 10.00.1

0-0

Figure S Fixed points of Henon attractor, trapping
region and eigenvectors associated with FP2

The left fixed point FF1 is repelling and is noticeably not on

the attractor or even within the trapping region. The

remaining fixed point FF2 is a saddle point and belongs to the

10

L0.0. 0 0....0,.

0

attractor. The Jacobian matrix at FP2 has associated 0
eigenvalues X, and X2, with slopes p, and P2 for the respective •

eigenvectors:

X, = 0.1559... p, = 1.9237...

X2 = -1.9237... p2 = -0.1559... 0

F'gure 5 also shows us the strong local effect of the

eigenvalues at FP2. Longitudinal spreading is due to X,.

Since IX2I is greater than 1, points are forced outward from •

FP2 along the longitudinal axis forming a roughly broken line,

at least locally. The eigenvalue X, causes a transverse

contraction of points. Figure 6 shows a detail of this 0

structure. The dense transverse structure is revealed through

local magnification in Figure 7.

0•51 /

0.3S

0.2

o.: FP2,
0. 15

0.10

0.4 0.45 0.o 0.55 0.6 0.6; 0.7 0.75 0.8

Figure 6 Magnification of area around fixed point

11

• • • Q........... • •_ .9 •0

0

0.22- oil.
0!0

0.21

0.19 - -

0.170

0.6 0.61 0.62 0.63 0.64 0.5

Figur:e 7 Detail of dense transverse structure around
fixed point

As magnification is increased and more points are plotted the

attractor begins to take on the appearance of distinct bands

with a cross-section that has the nature of a one-dimensional

Cantor set -- a totally disconnected set of points with

patterns that persist on infinitely small scales. This is the

self-similar nature of the attractor. Thus, at least on a

level local to FP2 we observe a fractal quality that is common

in chaotic attractors [Ref.5:p.670].

C. CHAOS

Because the field of chaos is in its relative infancy not

all terms are universal. The most mathematically rigorous and

12

widely accepted definition of chaos for discrete dynamical

systems is the following: 0

:EFINITION: Let S be a set. A mapping f: S -+ S is said to be

chaotic on S if

i. f has sensitive dependence on initial conditions,

2. f is topologically transitive,

3. the set of periodic points is dense in S. [Ref.8:p.50]

we will now elaborate on each of these concepts in a bit more

detail starting with sensitive dependence on initial

condit-ions.

DEFINITION: A mapping f: S -4 S has sensitive dependence on

initial conditions if at every x e S, there exists an £ > 0

such that for each 6 > 0, there is a y in S and a positive

integer n such that

0

Ix-y I< 6 and If (x) - f (y)I> £. [Ref.l:p.84]

Based on empirical evidence, the H~non attractor is widely

believed to possess sensitive dependence on initial

conditions. [Ref.7] The stretch-and-fold phenomenon mentioned

previously ensures that close points will not be neighbors

after a finite number of iterations. Figure 8 shows a plot of

13

i0

•. ,9 ...,o . , •.. . .o• 9o o ... 0.. o_0•

the Euclidean distance between the orbits of two initial

conditions. •

SI i
I i"

i, :' " -!

3.-

0 5 0 50 200 250 300 350 4CC A50 500
Itoration 0

Figure 8 Sensitive dependence on initial conditions

The two points are the origin (0,0) and a point (0,E') where

E' is just within machine epsilon, that is E' < E. Machine

epsilon in this case is approximately 2.22 x 10". Within

seventy iterations the orbits are completely different.

Of course, since both initial conditions belong to the

trapping region the maximum difference between the orbits is

bounded by the extremes of the trapping region. Although this

is only the first of three criteria for chaos some accept the

dynamics on the H6non attractor as chaotic based on sensitive

dependence alone. [Ref.4:p.671] Sensitive dependence brings 0

14

out an interesting paradox. Globally we have an attractor

with respect to the basin of attraction; however, locally for

the points of the invariant set, the orbit jumps around the

attractor chaotically, seemingly repelled by each point.

Topological transitivity, also called mixing, ensures that

the set on which the dynamical system is defined cannot be

divided into two disjoint open sets which do not "in:eract"

or mcre precisely, are invariant) under the system.

DEFINITION: A mapping f: S--+S is topologically transitive if

for any pair of open sets U, V, which are subsets of S, there

exists k >C such that f(U) r) V * 0. [Ref.8:p.49]

Essentially, for a system to be topologically transitive

it must be true that for any two arbitrarily small regions U

and V (where U and V are not points) we can find an initial

point x- in U whose orbit will enter the other region at some

iteration. [Ref.5:p.554]

For a system to possess dense periodic points means that

in an arbitrarily small neighborhood of any point belonging to

the attractor there must be a periodic point. This condition

suggests paradoxically that one of the qualities for "chaos"

is a high degree of "order".

Although there exists vast numerical evidence to support

the claim that H4non's dynamical system possesses all three of

these criteria for chaos, none of the criteria have been

15

0

00 0 0 0 O

rigorously proven. [Ref.5:p.671] [Ref.19:p.152] To keep this

in perspective, it must be acknowledged that our definition is

more stringent than proving the existence of a dense orbit and

a positive Lyapunov exponent, a commonly accepted alternative

definition. [Ref.14]

D. THE SHADOWING LUDIA - TRUSTING THE COMPUTER

The study of theoretical chaotic dynamical systems would

be extremely handicapped if we could not trust our computer

representations of these systems. Because a computer is

limited in terms of its accuracy by rounding error, _t .s

appropriate for us to ask whether our computer calculati=n s s

an approximation of some true orbit of the system. [Ref.9]

The Shadowing Lemma shows that we can trust the computer

image.

DEFINITION 1: The map f:R--> R is a class Cp map if it isp

times continuously differentiable with respect to x,,x

for some p, 1 5 p 5 -. A mapping f:R,-4 R' is class C' if each

component f of f, (where i=l ... ,m) is p times continuously

differentiable [Ref.10:p.l-21. •

DEFINITION 2: A mapping f:R'-- R- is a diffeomozphism if it is

one-to-one, onto and both f and f < are continuously

differentiable maps; f is a CP-diffeomorphism if both f and f

are Cý maps [Ref.10:p.2].

16

__ O0e e • o • O0

DEFINITION 3: Let f: R- - R- be a diffeomcrphism. A set A is

said to be a hyperbolic met under f if:

1. for all points p belonging to A, there .s a set of

lines E-(p! and E(p) in the tangent plane at p which are

preserved by the Jacobian of f at p. (Eý(p) is called the

s-atle line and E {p) is called the unsrable line.

2. E 'pý and E(p) vary continuously with p.

J. There is a constant X>l such that IJ(p) v) IŽXjv.'j fcr

all veE E p) and JJ (p) (v)1ŽXllvlfor all veEs(p). [Ref.S:p.236-

Suppose f satisfies the three previous definitions tor some p

with an associated hyperbolic invariant set A. The true

(forward) orbit of a point z. under the map f Is given by the

sequence {z }-" such that z, = f (z) . [Ref.!0:p.3511 Due to

finite precision the exact calculation of the sequence

{f-(z.) }" is impossible. Because we are unable to obey the
0

function z = f(zi) in order to find an exact orbit, let us

instead define a pseudo-orbit or more specifically £-pseudo-

orbit.

DEFINITION 4: An E-pseudo-orbit is a sequence of points,

{y } , such that y. r A, and

d(y..., f y.) < E

17

* 0 ~0 S 0

where d is a metric on R'. [Ref.10:p.352] The E-pseudo-orblt

is pictured at the top of Figure 9. 0

ey 2

Figure 9 e-Pseudo-orbit and 8-Shadow

Notice that we adjust each iterate by dropping f(yJ) and then

choosing y,., to be within £ of f(yJ) We can see that the

term pseudo-orbit, therefore, is appropriate. One final

definition is necessary for us to understand the Shadowing

Lemma.

18

EFINTI-C 5: Suppose (x_. is an actual orbit, that is, xeA

and x = f(x); {x.}-" is a 8-shadow of the pseudo-crbi1 •v ,v

if

dix.,y) <.

Th.e 6-shadow of the pseudo-orbi'. is shown at the bot-fm :f

Figure _ . The Shadowing Lemma assures us that w::h..

arbitrar..v small distance, 5, of an e-pseudo-urbt- t..z3e

an exact orbit. Stated succinctly:

Shadowing Lemma: If Definition 2 holds for the map f and A is

a hyperbolic invariant set on R', then for every 8 > C there

is an e ý 0 such that every E-pseudo-orbit in A is 6-

shadowed by the actual orbit of some point x E A.

[Ref.10:p.3521 * *

Although the Shadowing Lemma is very powerful, it does not

explicitly speak to us about the computed orbit, ca-I 1' ,

for which we hope to find to an exazt orbit nearby.

Our computed orbit, w., is not the true orbit "f I- we

are lioking for; however, let us show more clearly why It Is

an aCceptable approximation of a true orbit in the system.

[Ref.9:p.2511 The sequence of computed values, w , frcm the

Hrnon map for some initial condition y is actually: the

floating point representation of f(w) or,

19

• • t •

0 0 • 0 0

W•= y4

W-= fl f(y)

W = fl (f(w)

w-= fl f(wf(

w. I= fl f(wf)

Recall from our definition that f(y,) is within E of y .. in

order for us to show that a computed orbit, w,, can be

arbitrarily close to an exact orbit, x , which 6-shadows the

orbit, y., we must first make an important assumption. We

assume that at each iteration the error between the computed

value of r(y.) and the exact value of f(y) is bounded. Tnat

d(w,fy f)) < E" such that E < E-

0

where F- is some function of the machine precision which

bounds the error for all iterations. Figure 10 shows a

representative configuration of the orbits involved. By the
0

Shadowing Le~ima d(y.,x) <

20

00
• • • • • • 20

S.. l l i I I " ' l m ~ l a

fI

XW÷

Figure 10 Pseudo-orbit, exact orbit in S-shadow, and
computed orbit

Using the triangle inequality it follows that

d (w,, x,) <ý d(xi, f(y,-,)) + d (w•, f(yý.)

But,

d (x., f(y•._)) 5 d(x..,y..) + d(y., f(y:.-))

Therefore, 0

d(w,,x,)<5 d(x,,y,) + d(y.,f(y,-_:)) + d(w,,f~y.,))

or

d (w•, x,)<5 + E + E'.

If we let 81 = 8 + E + E,, then it follows that, for every 8'>E,

we can calculate a computed orbit, w,, that is 6'-shadowed by

an exact orbit, xi. In this way we see that the existence of

our computed orbit in the 8'-shadow of an exact orbit actually

depends on the precision of the machine in use.

21

00S... . e_ • • 9 • _9 _S.l raii, , , ,,,

According to a theorem in a recent paper (Ref.15,

specific criteria have been developed under which we are

assured that in the shadow of a computed orbit there will

always exist an exact orbit within a calculable tolerance.

The authors accepted that the H4non map and the Henon

attractor satisfied Definitions 1 and 2 previously mentioned.

The accuracy of the numerically computed orbits which the

theorem measures applies to non-hyperbolic sets as well as

hyperbolic sets so compliance to Definition 3 may be relaxed

[Ref.17]. Computations applying the theorem in reference 15

were performed in Microsoft Quickbasic using a double

precision IBM system computer. The value of c (the distance

between y and f(y.-) which defines the pseudo-orbit) was held

to approximately 2'. The authors applied the theorem and it

was discovered that even after 372,000 iterations there is a

true orbit which differs by at most 2` (approximately

1.8626xl0i) from the computed orbit generated by the H~non

map.

Based on the dense structure and infinite detail of the

H~non attractor it is intuitively reasonable that in the fcc:-

rrinC of the computed orbit there exists an exact orbit.

Thus, the Shadowing Lemma assures us that the statistical

evidence measured under computer analysis is significant.

22

1I. PSZUDORANDOIOZSS FROM CHAOS 0

A. LINKING CHAOS TO THU BINARY DOMAIN

Symbolic dynamics is a technique that can be used to

relate the dynamics of a particular system on a metric space

to another system on symbol space. Symbolic dynamics allows

us to analyze a system by studying its effect on symbol space.

The principal idea is that if two systems are topologically

conjugate, then their dynamics are equivalent.

DEFINITION: Suppose we have two maps: f: U - U and g: V -- V.

The functions f and g are topologically conjugate if there

exists a homeomorphism h:U-4V such that h o f = g o h. The

function h is a homeomorrhism if:

i. h is one-to-one

ZZFINITION: Suppose f is a function from U to V; f is

one-to-one if and only if for all elements u, and u-EU,

f(u.) = f(u-) implies u: = u,.

ii. h is onto

DEFINITION: Suppose f is a function from U to V; f is

onto if and only if for any element v in V there

exists an element u in U such that v = f(u).
4iii. h is continuous

iv. h-: is continuous.

23

e o :--... T... .. = ---

. 0 0 0 0

0

Criterion iv is actually implied by criteria i, ii, and iii.

Furthermore, if f is topologically conjugate to g then it
0

follows that g is topologically conjugate to f.

Finding a homeomorphism that forms a topological conjugacy

between two maps can be extremely difficult. However, this

does not diminish the power of the relation. A topological

conjugacy, as we mentioned, relates the dynamics of two

systems completely. [Ref.20:p.27] For example, if the

function f, from our definition, has a period-two cycle {p,q},

then fh'p) ,h 1 q) is a period-two cycle for the function g Tn

this way, all orbits for the function f have corresponding

crbits for the function g. Furthermore, if f has a dense set

of periodic points in U, then the same is true for g in V.

[Ref.5:p.571] Following this reasoning, if it can be shown

that the dynamics of map f exhibit the three characteristics

of chaos previously mentioned, and there exists a topological

conjugacy between f and g, then map g will also be chaotic.
0

[Ref.20:p.28]

Can we harness this chaotic energy that exists in one

system and through an effective symbolic dynamics transfer it
0

to another under a homeomorphism to achieve a useful result?

This is precisely the issue raised in R6jAne Forr6's treatise

of November 1990. [Ref.12] Forrt hoped to apply a presumably
0

chaotic discrete dynamical system to the field of

cryptography. Specifi::illy, she attempted to devise a scheme

to generate nearly rand:om sequences of zeros and ones which
0

24

* • - - - 0 o 9

could be used for coding purposes. (Any numbers generated by

a deterministic rule cannot be truly random and are, 0

therefore, termed pseudorandom.) Forr6's proposed symbolic

dynamics relates the apparent chaotic dynamics of an orbit on

the Henon map to binary codespace by

h:HA-

Here, A represents the attractor associated with the mapping

f (see definition Chapter I. section A. p.1); in partic•-a" ,

f is the H~non map. The set Y, also called symbol space or

codespace, represents the collection of all infinite sequences

of zercs and ones. Any chaotic behavior exhibited in the

H~ncn map transferred to J2 would be observed as a

pseudorandom stream of zeros and ones in L. Forr4's symbolic

dynamics is based solely on the horizontal component, x., of

the iterates of the H~non map. The elements of such a binary

sequence (S 1<=:7 in I- are defined as follows:

if x, S x..,: then S, = 0;

if x, > XME:, then S, = 1,

for a string of length N where XME, represents a dynamic

median. (The dynamic median ensures that on the average the

trajectory will fall on each side of the median for half the

25

• •• •e • O _0

0

iterates; this median has been more carefully calculated as

x...=.4098 in reference 13). In order to clarify the 0

computational process involved in Forr6's symbolic dynamics

the following example is furnished. Let us arbitrarily choose

a particular (xo,y,) value from the trapping region, say 0

(x ,y) = (1,0). Since x, > x,,- the binary sequence element

corresponding to (x,,y.) is S- = I. Using equations (3.1) and

(3.2) below we calculate (X:,y,) as follows: 0

x,., = 1- 1.4 x,2 + y, (3.1)

y. = .3x, (3.2)

x = 1 - 1.4(i)l + 0 = -. 4

y: = .3(1) = .3 0 *

Because x, • XME: the next binary sequence element,

corresponding to (x,,y), is S" = 0. In this way we can 0

calculate the entire forward sequence of binary elements:

S = (so, , S2,S". .} = {i,0,i,0, . .. }.

Although Forr4's calculated median was inaccurate (she

used a dynamic median xME, = .39912) her results showed that 0

under the cryptographic properties of linear complexity and

jump complexity the bitstreams were wholly indiscernible from

truly random sequences. However, she concluded that a third 0

26

0

99 0 0 0 9

S

property, the n-tuple distribution, was inconsistent with

truly random sequences and that this rendered the unaltered

scheme unsuitable as a pseudorandom number generator.

B. RICUNT STUDY OF FORRV'S SYMBOLIC DYNAMICS

Forr6 drew attention to the poor n-tuple characteristics

of her unaltered symbolic dynamics. In a more recent study

[Ref.13] Heyman refined the calculation of the median, xE,,

and rigorously investigated the n-tuple property, as well as 0

three other cryptographic properties, to evaluate the

pseudorandom number generator. It was concluded that the n-

tuple or runs property was a minor detractor and that the 0

proposed use of the scheme as a cryptographic pseudorandom

number generator was sound and effective. The runs property

was mentioned by both Forr6 and Heyman, but the authors' 0 0

conclusions with regard to the significance of the property

were markedly different. Under these mixed results, the runs

anomaly demands further investigation. 0

Due to the disparate conclusions drawn by Forr4 and

Heyman, it is a natural next step to evaluate the symbolic

dynamics under more mathematically rigorous criteria in order 0

to determine more objectively and conclusively whether the

scheme is an effective pseudorandom number generator. Because

the chaotic behavior on the attractor and certainly the 0

symbo.lic dynamics scheme itself are mathematical concepts, we

evaluate the pseudorandom number generator mathematically.

27

• • • •0

This is certainly necessary since the previous papers were not

analytical and gave only a cursory mention of the theory of 0

chaos. Primarily, our task is to collect evidence to prove or

disprove that this scheme,

h:HA -

gives a homeomorphism. Our secondary objective is to explain

completely the runs anomaly in mathematical terms. Thus,

based on the definition of a homeomorphism we will provide

experimental evidence to support the one-to-one property.

Furthermore, we will provide analytic proof that the presumed

homeomorphism is not onto for the proposed pseudorandom number

generator.

28

• • 9 • •• ... •0

, 0 •

S

III. EXPERIMENTAL EWVIDENCE FOR ONE -TO-ONZ

A. A COMPUTER PARADIGM

The H~non attractor A = HA is an infinite set of points 0

produced by the H~non map. The initial condition of the H~non

recurrence dictates which orbit on HA we produce. Let X.,X be

two infinitely long sequences of points (orbits) based on two •

different initial conditions (s,,t-) and (1-,m) respectively,

where (s,t), (l,,m) are from HA. The sequence X will be

defined as ((s:,t;), (sl,t.), (s 2,t 2) . ..). The sequen-e '. will 0

be {(l_,mT),(l,m.),(l,mj)...}. Although the two-dimensional

plots of X: and X- are indistinguishable, the two sequences of

points XX-) are not the same. Let h():),h(A) belong to 1, *

the space of all infinite sequences of zeros and ones. For

the symbolic dynamics h:HA -+ 1. to be one-to-one, it must be

true that if h(k.) = h(X-) then X. = V-. That is, if two &

binary sequences belonging to X are identical then they must

be mapped from the same initial point (x,y) in H•.

We cannot hope to find with any precision the pcints•

belonging to HA. Furthermore, by increasing the number of

possible initial conditions or keys from which we can generate

orbits close to the attractor we enhance the cryptographic

qualities of the pseudorandom number generator. That is, we

reduce substantially the possibility of the key being found

29

• •• •.9 o _ • e 9 S

and the code being broken. For these reasons we modify our

symbolic dynamics scheme to h:TR-+ L. That is, we increase

the number of possible keys to all those possible points from

the trapping region. Under the H~non map the trapping reglon

is also invariant; therefore, h:TR-4Y is a symbolic dynamics 0

analogous to h:HA -+ 1-.

If two binary sequences are not the same then they must

have originated from different initial (x,y) values. The

total count of computer representable numbers in the trapping

region, although extremely large, is finite. Thus the task cf

proving that the homeomorphism is one-to-one on an uncountably •

infinite number of points in the plane is avoided and

unnecessary. Certainly, no irrational numbers are computer

representable. Since all pseudorandom number generators are *
implemented in a computer environment we qualify our goal to

showing that the presumed homeomorphism is computer one-:o-cone

on TR. That is, we attempt to show that the homeomorphism is

one-to-one with respect to the computer representable points

in the quadrilateral.

We propose then a computer paradigm that models the finite

number of computer representable numbers. The model will also

give us insight into the complicated dynamics of the map.

Consider the trapping region or quadrilateral as a grid

consisting of a large but finite number of points. Figure

shows the quadrilateral and the median xE, = .4098.

0

30

0

00 0 0 0 0 0

0.4-

S00

!4

_0.2

-0.4-

-0.6 r/ XmED

.1 -050 .

-I .O. 0 O.S l

%-axis

Figure 11 Trapping region and dynamic median

The quadrilateral is divided into two sides by the median. 0

An initial point chosen from the left quadrilateral will

correspond to a sequence under h:TR-+EY that will begin with

the binary digit zero (0). Similarly, an initial point from 0

the right quadrilateral will correspond to a sequence that

will begin with the binary digit one (1) . Let us focus on the

right quadrilateral. (Our argument will extend to the left

quadrilateral.)

We model the computer points in the right quadrilateral

region by first enclosing it in a rectangle of minimum area.

By choosing a particular spacing we can fill the rectangle

with equally spaced points to produce a Cartesian coordinate

system. If we disregard the points in the rectangle but

31

• • • t• • e •0

0

outs-de the trapping region we have a grid which can be used

to model the large but finite number of computer representable

points. If we can show conclusively that as our spacing

becomes smaller and smaller, the binary sequences of these

points are all different from that of a point chosen at random

not belonging to the grid points, then we should be conv:nceo

that h is one-to-one. Fundamentally, we first choose a fine

grid spacing for the right quadrilateral that correspcnds t:

a large number of points in the plane. As we iterate a17 :he

grid points and our random point through the H6non map we cu-l

out those points that at each iterate do not give the same

binary element from {0,1} as the random point. We must

convince ourselves that there exists some iterate fcr which

all the binary sequences corresponding to the grid points

differ from the binary sequence of the random point. Thus, we

focus on a succession of subsets of our original grid p-ints

at each iteration. In this systematic way with computer

assistance we hope to reveal the answer to our question.

B. PUTTING THE MODEL TO WORK

Let us begin with an example of our model in practice. This 0

example was chosen because it allows the reader a clear,

typical depiction of the procedure in a small number of

iterations. Various MATLAB programs for this process on both 0

sides of the quadrilateral can be found in Appendix A under

the names GRDCOMPI.M through GRDCOMP4.M. As shown in Figure

0

32

0

000000 0 0 0

12 the model lets us fill the right side of the quadrilateral

with equally spaced points determined tL. a specified value for

the spacing.

GA-jd W P CWPWa m Aw8nu

0.4 •

4 0

•! FP2

S............

Figure 12 Typical run right quad model: before iteration

Here we u3e a relatively coarse spacing of 0.06. The point

(W,Z) represented by a cross within the field is chosen at

random but should be different from the grid points. Figures

13 through 21 represent subsequent iterates of the Henon map

where only those points from the grid which give the same

binary sequence as the randomly chosen point (W,Z) are

preserved. The median, xE, = .4098, is the dynamic median, as

previously mentioned; therefore, it is not surprising that we

lose approximately half the points at each iteration.

33

• • •• • • ,. •0

00Ir ! i I1 I . . I I I I0I0II n

%'ftmm ot Poaha ins G.d wuh Sam Semy Siime

0."

I •

-0-20

.1-0-5 0 0.5

Figure 13 Typical run rigct quad model: Iterate 1

•,4owente .f hem ,,n Grd wt• SamJ Binary Saquenca

0

- w 4)-5 0 0-.5 -

Figure 14 Typical run right quad model: Iterate 2 0

34

...
* 000 0. 1

0

MssPm k . a G•i wvA Sa.m Zwamy Swqui

0

0.4 •

WIZ

-0

-0.40

.1 -0.5 0 0. 1

Figure 15 Typical run right quad model: Iterate 3

Motvsmi ofPw~u ta 3nd wuh Sam swn Ssaeae

.0.12.

.1 -0.5 0 0.5

Figure 16 Typical run right quad model: Iterate 4

35

0.4 0

0.0

0 "Z-0-20

0.4•-

0 Oj I• 1 •.0. 0 0. 1

Figure 17 Typical run right quad model: Iterate 5

Movn• o(Poum u ,d dwi Sm RBbam rSq

0.0

-0.2

-0I .5. 0 0.5 1

Figure 18 Typical run right quad model: Iterate 6

36

S... e •O • • , .o e _

veuu of Phum in Grd wu Sam Biary Seqwm

0

0.2.

.04

*1 0.5 00.

Figure 19 Typical run right quad model: Iterate 7

.%%Ovunm of Pham ia GM -ich Sum. BRin•y S"qm,

0

Olr

-02

-L -0.5 0 0.5

Figure 20 Typical run right quad model: Iterate 8 0

37

0.4 .

0- W0

41!

0

-1 -0 j 0 0.5 1 0

Figure 21 Typical run right quad model: Iterate 9

By iterate 10 (not shown) no grid point is on the same side of

x,,, as (W,Z). Figure 22 gives us an idea of how quickly the

points that follow the orbit of (W,Z) diminish in number. The

curve (1/2)' is plotted as a comparison. TABLE 1 shows the

count of points for iterates 1 through 9 that give the same

binary sequence as (W,Z).

TABLE 1 NUMMZR OF POINTS THAT GI" TRZ SADM BINARY SEQUENCE0

NUMBER OF POINTS THAT GIVE THE SAME BINARY SEQUENCE

ITERATE 0 1 2 3 4 5 6 7 8 9 0

NO. PTS 98 65 13 9 4 4 4 4 4 1

0

38

0

000 0 0 0 0

S

Detet in N. of Grid Paints with See Kney Seric and (W~ vs. n

Um
Uw

MO

a 0

I

7I0 -

A
40.

;30 0

10-

1 2 3 5 6 7 9

Iteration

Figure 22 Grid points with same sequence after n
iterations

Presumably based on the map's sensitive dependence on initial * *
conditions there occurs a natural spreading effect, most

noticeable in the left half of the quadrilateral, that forces

the previously close points away from each other. A typical 0

example of a run of this procedure using the left.

quadrilateral can be found in Appendix B.

Does there always exist an iterate N where the sequence •

for (W,Z) diverges from all sequences corresponding to even an

extremely fine grid? Certainly this example only gives a

taste of the capability of the computer to fill the right or

left quadrilateral with points. Based on the limitation of

computer memory it is not possible to use a Cartesian spacing

small enough to model even a small fraction of the huge number 0

39

• • •• • • _• •S

of computer representable points. This is not our goal. We

concern ourselves, instead, with the trend in the iterate N

where all the grid points diverge from the iterate of (W,Z).
4r

Let N be the iterate at which all the sequences

corresponding to the grid points diverge from the sequence

corresponding to (W,Z) . Using our last example we plot the

grid point that lasted until iterate N (call it (u,v)) with

(W,Z) for the 9 iterations. The trajectory of the two points

is depicted in Figures 23 through 32. Point (W,Z), again, is 0

depicted as the cross (+) and the point (u,v) by an (x).

V,Z an Grid Point with S- mZY SinuT •

0.4

0.2

... ". ~

0• .

"• .. " 'W,z

.1 4.5 0 0.5 1

Figure 23 (W,Z) and (u,v) prior to iteration

40

*.. 0 0 S 0 0 0l 0

0.20
0.0

.0.4-

Figure 24 (W,Z) arnd (u,v): Iterate 1

.M~ov=NM of Pt Chum a HA ad~ Nkmanag Sequsac Pt MWa Diwug

1.4

-0.4

-I .U 0 0.5

Figure 25 (W,Z) and (u,v): Iterate 20

41

010

0-0

-1 0.5 0 0.5

Figure 26 (W,Z) and (u,v): Iterate 3

Mevwww of Pt Cbýomna HA od ?4u*Ang SOq~f Pt WOi Divwr*

0.0

0-0

-0.4-

.1 0.5 0 0.5 1

Figure 27 (W,Z) and (u,v): Iterate 4 (Notice that the
two points are essentially superimposed).

42

S
Wvmo at Pt CMm an .A wA Maum%" Seq=w. Pt mW Divw

0.4 .

• .

oe** 0o

-0.4[

..4j 0 0.3

Figure 28 (W,Z) and (u,v): Iterate 5 (Notice that the
two points are essentially superimposed).

Mom~m d Pt Ch• as HA ad Mud Sae&=m Pt umW Dtw

434

0S

t points ar e t s

43 .

.. 0 :•

0

0.4

0-0

L 1 _ _ _ _ _ _ _ _ _ 0_ _ _ _ _ _1

Figure 30 (W,Z) and (u,v): Iterate 7 (Notice that the
two points are essentially superimposed).

Mvu=ma of Pt Cem as HA ad Ji*aubi SWusa- Pt sm Dn-Vr

.0.4

0-0

Figure 31 (W,Z) and (u,v): Iterate 8

44

Hosawmaw of ft Cho a HA wd.%&saMb Seusacs Pt Ia~ai Dtw

-04

00

.o.4o"-

Figure 32 (W,Z) and (u,v): Iterate 9

Notice the proximity of (W,Z) and (u,v). They are in no* *
way superimposed. indeed, in a Euclidean sense the two points

are not close at all. These positions may seem acceptable but

even when the spacing between points is dropped to the limits

of computer memory the proximity of (W,Z) to (u,v) does n.t

appreciably change from this typical example. it is a fact

that throughout the trajectories of the two points there may

be iterations where the points are virtually superimposed as

in this example, but as a rule (W,Z) and (u,v) are not

initially neighbors. Furthermore, as in the typical run using

the left quadrilateral in Appendix B, sometimes more than a

single point (u,v) gives the same binary sequence as (W,Z).

Typically one, but up to seven points (u,v), in arbitrary

45

.0

observations, have mirrored the bitstream of (W,Z) and these

multiple matches likewise are not tightly packed points. This

phenomenon lends support to our model because it is not the

points closest to (W,Z) which typically give the same bDrnary

sequence. Typically many other points were much closer in a

Euclidean sense to (W,Z) but they were rejected. That is, we

cannot look only in the immediate vicinity of (W, Z) for pcn! s

that offer good bitstream matches. Certainly, if a

cr-yptographer knew that his chances for regenerating an

identical binary sequence were much higher in the vicinity of

(W,Z) he could use it to his advantage. Therefore, this

quality is benericial.

The GRDCOMP!.M - GRECOMP4.M models (mentioned previously.'

perform a grid comparison between the chosen point (W,Z) and

the grid developed on a particular side of the dynamic median.

The models GRDCOMPI.M and GRDCOMP3.M examine behavior in the

right quadrilateral, and GRDCOMP2.M and GRDCOMP4.M model the

left quadrilateral. The GRDCOMP1.M and GRDCOMP2.M models use

a predetermined (W,Z) value from their respective side of the

quacrilateral but not on the attractor (HA) to compare against

the developed grid. The GRDCOMP3.M and GRDCOMP4.M mczels

differ from GRDCOMPI.M and GRDCOMP2.M in that (W,Z IS

iterated through the H~non map to ensure that the pcint

neighbors the attractor before the comparisons begin.

46

0

* ... 0.. .. 0 .. 0 0 , , 0 0

These computer models give us a feel for the N value to 'V
expect whel. we designate a particular spacing in the right or 0

left grid field. The computer models PROOF1.:.[- PROCF4.M are

identical to the GRDCOMPI.M - GRDCOMP4.M models except that

they allow us to vary the spacing. We are able to desigr-:e 0

a coarse and fine spacing range and an increment to use

between these values. As the Cartesin spacing is stead'-"

decreased and more points fill the particular half-field, by 0

observation, N likewise seems to increase steadily. This

behavior is pictured in Figure 33. Here, we use the PROOFI.M

model incrementing the spacing from .003 to .5 by .CC1 for a 0

-ota, of nearly 500 entries.

30

•25 •

20-

I 5l

0~

Z e0F . •:* i .-

..... . -. .. 6U ** *
w°e-' -'.m -'.a "-- "- .. .- -in m a

4•, .. a'm . a • - . ,

0 0.05 0.1 0.;5 0.2 0 5 0.3 0.35 0.4 0.45 0.5
Spa- -Ig

Figure 33 Reduction in sjaclng vs. N (PROOFI.M model)

47

0 0

• 0 0 S • 0 0 0_ 0

0

Although there are a few outlierb all the N values appear to

be clustered and to steadily increase overall as the spacing

becomes finer and finer. This behavior was observed fzr the
4

PROOF2.M - PROOF4.M models as well.

Let us establish .10 as the coarse spacing upper round

because it is a round number and it allows us to fill either

half-field with more than just a few points. In computer runs

using this upper bound and steadily finer spacing (to the

limits of computer memory) we observe the same general

relationship between the decreasing spacing and N values.

That is, as the spacing is steadily decreased the value of N

correspondingly increases.

To further test our models certainly we must not limit

ourselves to a comparison of a single (W,Z) value over the

range of spacing values. Because we observe the same general

behavior in our GRDCOMP models whether we use a particular

(W,Z) not on the attractor or a (W,Z) from the attractor let
0

us choose an arbitrary number of (W,Z) values and repeat our

models 'PRFI.M - PRF4.M) . For simplicity the arbitrary number

of (W,Z) values (31) are taken from a line belonging to the

carticular side of the quadrilateral. Figure 34 shows a run

Df model PRF1.M (which corresponds to our GRDCOMP1.M model but

for multiple spacings and (W,Z) values).

48

• • • •• • •0

* I 00I 0I I 0ll

333

10. :o::oo

•~ ~~~~~~~~~~~~~°°"....... °° °°" °° "°° "° ° °...........

2 3 4 S 6 7 3 9 :0

Spacing "

Figre 34 Reduction in spacing vs. N (PRF1.M model)

This run again is typical of all runs of the models PRFI.M * 6

PRF4.M. This run increments the spacing from .01 to .10 in

steps of .001. Notice that there do not appear to be 31

values for each spacing value. This phenomenon actually •

supports our observations because many of the points are

superimposed on each other on the graph. Again, we observe an

apparently steady increase in N values as the spacing becomes •

finer with few significant outliers. This graph contains

almost 3000 points.

7n order to show experimentally that the observed 0

behavior exists, we select a modest fine spacing as a lower

bound and a tiny increment. By using an extremely small

spacing we are able to collect an enormous amount of data to 0

49

JL,.
S0 III0" " 1 I I l l III I n n 0 i i

use as statistical evidence. The limitation is not computer 6
memory but the mainframe graphical statistical system (AGSS) 0

which allowed a sample size of 45136 points. For each of the

31 (W,Z) values 1456 separate runs were completed. This

corresponded to an increment of .0000625 between .01 and .10. 0

The results are pictured in Figures 35-38.

NONLINEAR CURVE FIT 0
SCATTER PLOT. SSZ-45136

**YI W - AxEXPON BxX
• • , WH-ERE: A. 8 21.092, -10.953J

E 0z

•* •

M02 0.04 O. 0.08 0.10

GMs SPACG

Fgure 35 Nonlinear curve fit model PRF1.M

50
0

• • O• • • O,,O0

I " " " ' " + - '. ". . . . ". ..5 0li

NONLP"A CURAVE FIT 3
SCATTER PLOT. SSZ-45136

Y - MEXPON BxX
* WHERE: A. B 24.989. -8.0599

: •

0.02 01M4 0.06 0.06 0.100

i " "t

Figure 36 Nonlinear curve fit model PRF2.M

*0

NONLINEAR CURVE FIT

SCATTER PLOT. SSZ•.45136

9-y- AxExPON Bxx 0

- . . *WHERE: A. B *18.506. -11.6921

: : : *

M .� .0

0

0.200 0.06O 006O 0.20

GRID SPACM

Figure 37 Nonlinear curve fit model PRF3.M

51

: . HER: AB 1.506 -1.69

* 0 S 0

NOtdLt4E CURE I

Y - AxEXPON BxX
WHERE: A. 8 -20.824. -9.8852

iti

0.02 0.04 0B 0.8 24 .-
GM SPACM

Figure 38 Nonlinear curve fit model PRF4.M

The figures correspond to the models PRF1.M to PRF4.M. The *
nonlinear curve fit takes into account all 45136 points

although only a representative handful are pictured. The

curves respectively correspond to the following nonlinear

equations:

PRFl.M: curve 1 21.092 e

PRF2.M: curve 2 24.989 e

PRF3.M: curve 3 18.506 e

PRF4.M: curve 4 20.824 e -3852x

All four nonlinear curve fits are monotonically increasing

from right to left. This result seems to suggest that in a

520 F.M:cure0 20 82 e0- 0 0

0

statistically acceptable fashion, given a particular spacing

for our grid we can predict an N value for which the binary

sequence of (W,Z) will diverge from those of the grid field.

How small can we make c r grid spacing before our models

fail? Certainly, for any particular computer there will exist

a value, call it E, such that computer numbers within that

tolerance will be considered the same. That is, if x and y

are computer representable numbers and Ix-y I < E, then x = y.

The value of E varies. Let computer epsilon be defined as

a value, F, below which 1 + E = 1; 386 Matlab version 3.5M

computes this value as approximately 2.24 x 10'. However,

the value of E (using the same definition) such that 0 + E =

0 is on the order of 10" for the same system. One can

speculate that at some diminutive spacing S, our model will

fail. That is, there will exist a spacing where the computer

will not be able to build the grid. The computer model will

calculate the first point x in the rectangle which encompasses

the quadrilateral. But, because the spacing S is smaller than

the E tolerance that the computer needs to recognize the next

point y, x and y are seen as the same point. Only the first

grid point will appear in the grid. However, this is in

keeping with.. 3ur definition of one-to-one for our presumed

homeomorphism because if two sequences are wholly the same

then they come from the same initial condition. That is, the

sequences are generated from two initial conditions (points)

"that the computer recognizes to be the same in finite

53

• • • •• • •

*0- mm S 0

0

precision although the initial conditions would differ in

infinite precision. Thus, we have experimentally shown that
0

for the symbolic dynamics if we have two unequal initial

conditions then after some iteration N the corresponding

sequences should diverge. Therefore, we have experimental

evidence to support the statement that the symbolic dynamics

is one-to-one.

54

•_ • . _ _ _ _ IO .W _ _

S. - II n l ll i I- ll tl i0

4
IV. ONTO 0

A. ONTO PROPURTY

Whether or not the proposed symbolic dynamics has the onto

property previously mentioned is directly brought into

question by the runs anomaly which was closely examined in

reference 13. This property, defined in Chapter II. section

A., informally states that under the symbolic dynamics, every

possible sequence of zeros and ones is possible or realizable.

If a pseudorandom number generator has a favorable runs

property, all possible n-tuples (sequences of zeros and ones

of length n) must not only be possible but their occurrences

must be balanced. The unbalanced count of particular n-tuples

is precisely the runs anomaly pointed out by Forr4 as the

fatal flaw of her pseudorandom number generator.

The runs property of a binary sequence is tested by

counting the occurrences of the 2' different possible n-

tuples. For example, in Heyman's study, typical binary

sequences of length 10' were used to test 2-tuples cn a

computer. There are 2:=4 2-tuples: {0,0},{0,i},{l,0},{li}.

The program ONTO.M (Appendix A) counts the four different 2-

tuples in a binary sequence. Figure 39 shows a bar graph

which gives the couiit or the four ý-tuples for a typical

binary sequence of length 5 x 10.

55

SO •O •O • J •

* i 0l i lin . . . hl0...

10-

1 15 2 2.5 3 3.5 4 4-5

Shifted Decinal Equivalent

Figure 39 Incidence of 2-tuples in typical H6non
generated binary sequence

Notice that the horizontal axis is actually the decimal

equivalent of the n-tuple shifted by one from zero. That is,

instead of the following 2-tuple to decimal correspondence:

2-tuple decimal

00 - 0 where [0 01 * [2 l]- 0 = 0

01 - 1 where (0 1] * [2 1]? = 1

10 - 2 where (1 01 * (2 11 = 2

12 - 3 where [l 1] * [2 1]7 = 3,

we use

00 - 1

01 - 2 0

10 - 3

11 - 4.

We will use this shifted correspondence for all n-tuples. The 0

unbalanced or uneven bins of 2-tuples in Figure 39

demonstrates the runs anomaly. The depth of this anomaly is

shown in Figures 40-42 which correspond to 3,4 and 5-tuple 0

56

counts respectively for typical binary sequences of length 5

x 101. Modifications of ONTO.M were used to produce the •

associated data for finding the count of 2-tuples to 17- 4

tuples.

12

1, 0
o-4

:4.r

0 1 2 3 4 S 6 7 8 9

Shifted Decimal Equivalent

Figure 40 Incidence of 3-tuples in typical H6non
generated binary sequence

x 0

z 10'

0
10-

5S

S2 4 6 8 10 12 14 16 is
Shifted Decimal Equivalent

Figure 41 Incidence of 4-tuples in typical H6non
generated binary sequence 0

57

x10X i

.0 =lLwLI,. j. f!~=
S 10 15 20 30 35

Shifted Decimal Equivalent

Figure 42 Incidence of 5-tuples in typical H6non
generated binary sequence

Notice that in Figure 41 the bin corresponding to the decimal 0

13 is empty. The bin corresponding to the decimal 7 is also

empty but in tests using binary sequences of length 10° this

bin is not. The 13 bin, however, remains empty in the 10 ' 0

length test.

It was believed (Ref.13] that as sequences of greater and

greater length were tested, the missing sequences would be •

found although the runs property, namely the balance of the

bins, probably would not improve. Under memory constraints of

the runs property test using a Sparc station 2, the length of •

the longest possible testable binary sequence was roughly l0b.

Using initial conditions from all four quadrants in separate

tests with binary sequences of length 106 no 4-tuple was ever 0

found to correspond to the decimal 13. The decimal 13

corresponds to the binary 4-tuple {1,1,0,0}. It is therefore

expected that, when the 5-tuple runs are tested, those 5- 0

58

tup'es which contain the 4-tuple (1,1,0,0} (see Table 2

should be empty. •

TABLE 2 5-TUPLES CONTAINING {1,1,0,O) AND DECIMAL EQUIVALENTS

5-tuples with (1,1,0,0) decimal equivalent 0

(1,1,0,0,0) 25

(1,1,0,0,1i 26 0

{0,1,1,0,0} 13

{1,1,1,0,01 29

This is indeed the case; however, these are not the only

subsequences of length 5 unrealized in a sequence of length

I>. Table 3 lists those additional 5-tuples that are not

realized and their corresponding decimal values.

59

0i

* S S 00 ~

0

TADLZ 3 5-TUPL• S AND THEIR DZCIMAL EQUIVALENT
0

5-tuple decimal equivalent 4

(0,0,0,0,0} 1

50(0,0, ., 0,01 5

(1,0,1,I,0} 23

(i,1,0,1,11 28 0

In fact, the property was tested for n-tuples from n = 2

to 17 (see Appendix C for 6 through 16-tuple runs) and an

increasing percentage of unrealized sequences occurs. Table

4 shows the number of unrealized sequences and the total

number of possible n-tuples for a particular n.

60

TABLE 4 UNR.ALIZED SEOQUNCES AND TOTAL POSSIBLE n-TUPLES

n-TUPLE UNREALIZED POSSIBLE PERCENT S

SEQUENCES SEQUENCES UNREALIZED

S0 4

3 0 8 0

4 1 16 6.25

0
5 8 32 25.C'0

6 28 64 43.75

7 75 128 58.59 0

8 179 256 69.92

9 399 512 77.93 3 *

11 856 1024 83.59

ii 1794 2048 87.60

•"•37i5 4096 99,.. . 70

13 7628 8192 93.12

14 15580 16384 95.09

15 31588 32768 96.40

16 63993 65536 97.65 5

17 128922 131072 98.36

61

• • • •• •.o_• • O

00 I I IIII0 .. . II I0I. . .0..0

'A

Figure 43 shows how the percentage of unrealizable sequences E
U

increases as the n-tuple length increases.

S0.8 -

0.6 -

I 0

0 2 4 6 8 10 12 14 11

n-tuple

Figure 43 Percent of empty n-tuple bins vs. n

B. ANALYTIC PROOF OF UNREALIZABLE FOUR-TUPLE

Based on the previous data alone, the presumed

homeomorphism cannot be disqualified from having the onto

property. An analytically substantiated example of a wholly

unrealizable sequence, however, would suffice. Let us

investigate the first suspected unrealizable sequence,

(ii,1,01. From the runs tests we see that the sequence

{(,!,0,1} is possible although {(,1,0,0} is not. Figure 44

shows the portion out of 5000 points on the attractor which

gives the sequence (1,1,0}.

62

* •0 0 0 0 0 0 0 I

Exclusion Area of Points which Never Give Sequence 1100

0.4

0..

-0.2-

.. 60
-- 1 -0.5 0 0.5 1

Figure 44 Points from a sequence of 5000 that give the
sequence (1,1,0}

These are also the same points which give the sequence

(1,1,0,i}, since none gives the sequence (1,1,0,0}. It is s

apparent that these points are localized in a particular area.

Figures 45-47 show the subsequent iterates of these points.

63

• • . •• •

* 0 0 . .n, ,u 0 00 m 0nnnn nn ann•m 6~

0.50

0.4I
0.

-

0.

0.1

-0.2

-0.3

0~.5

-0.4.

.0.3'0

t0

-0.35 0 0.5

Figure 45 First iterate of points that give the sequence

sequence

6 40.5.
0.41 .1

- 2

.0.2F 1•• i"

-0.4 L.

-05' - * 0.5 0 0.51

Fi~-ire 46 Second iterate of points that give the
sequence (I,1,0)

64

• • ,, e t • •.e. ,,,,0

*I0i II0 0.. . 0nmll

CL5
i

03

0

-0.2

0.41 4I S

0.3-

itZ iscerta2l hs onsudrieaincrepn

to Fh seune(,,,10udrltrli lcdaon

*065

I* 0

It iscerta l hs onsudrieaincrepn

to the sequence {l,I,0,l}. A quadrilateral is placed around

the points of Figure 44 in Figure 48 (call it the 0

subquadrilateral or subquad).

65

• • •• • 2 _ _ _ _ _ •0

0

i
S 9)

0

0..

0-0

Figure 48 Subquadrilateral placed around those points 0 0
that give the sequence (1,1,0}

By iterating the points belonging to this subquad using the •

program FINDllO.M in Appendix A (see Figures 49-51) we see

computer-generated evidence that no points within the subquad

correspond to the binary sequence {i,1,0,0}. 0

0

66

0

b 00 0 0 SSS 0

0.0

0.0

-00

Figure 49 First iterate of points comprising
subquadrilateral.

0..

0

0.0

.1 0.5 0 04

Figure 50 Second iterate of points comprising
subquadrilateral0

67

0 A)

010
m

44

00

.1 0 0O51

Figure 51 Third iterate of points comprising
subquadrilateral

This exclusion zone does plainly suggest that the sequence

(1,!,0,0} is unrealizable. Using a binary H4non sequence of

length 105, approximately 5115 points lie in the subquad or

exclusion zone. This suggests that an orbit has a probabilhty

density of approximately 5.115% in the subquad. Since the

H6non map has been shown numerically to have topological

transitivity, we expect that under reverse iteration of each

point in the subquad there will be a preimage which will lie

in the subquad. Therefore, this means that all points pass

through the subquad and that no points which pass through this

window give (1,1,0,0}.

68

• • •• • •• •

0

Let us look more closely now at the points that would give

{(,1,0,0) instead of those that would not. If we can show

that the set of points that can possibly give {i 0,l0} "s the

empty set, then we will have proved that this proposed

symbolic dynamics does not possess the onto property. Recall

the Henon map introduced in Chapter I:

x. = 1 - 1.4x. -+y.

y--: = .3x-.

It follows that:

x... = 1 - 1.4x-. + .3x.-:. (4.1)

Our first goal is to find the solution set that corresponds to

{i,1,O}. In order for a sequence of (x,y) values to

correspond to {I,i,0} the x values {x.,-, x, x-..1 must obey the

following inequalities:

0

x _ > x-_ (4.2)

Xr > xzE- (4.3)

x1-: <5 xYE- (4.4)

where x,-=.4098, the dynamic median rounded to four

significant digits (previously discussed). Inequality (4.2)

can be substituted in equation (4.1) as follows:

x,., > 1.12294 - 1.4xi (4.5)

69

• • • •• • •0

00m 0m lmm 0 0 0 .. 0.. .mm nm-- m . .

where the constant 1.12294 is rounded to five significant •

digits as an underestimate in order to make our proof valid.

Moreover, in all such cases we round in the appropriate (i.e.

conservative) direction. In Figure 52 we see via (4.5) that

the solution set corresponds to the region above the inverted

parabola, in the x,x,.,-plane.

0 00

-0.5 - /

7
*1 -0.0 0 0.5 1

Figure 52 Solution set of points that could give the 5
sequence (1,1,0) under xn.I restriction

70

0i

S S50 0

Figure 53 shows the possible solution set under restrictions •

(4.2), (4.3) and (4.4)

O.i '- 0• O

0

"*-4 .0.5 0 x •5 0 0

Figure 53 Solution set of points that give the sequence
(!,1,0} under x,,C restrictions

By inequality (4.4), x,., has a maximum value less than or

equal to x.ME. if we let x,., equal exactly xE, in inequality

(4.5) then x,, is further restricted to a value greater than

.71371. Thus, the solution set corresponding to equation

(4.1) is limited to the region shown in Figure 54 and reviewed

as follows:

x,-, :region above the inverted parabola I

x•. region such that x., > .71371 1

x-, :region such that x... < .4098 : 0

71

0 X"
-0.5-

0 /

"1. -0.5 0 0.5 ,71371

Figure 54 Solution set of points that generate the
sequence (1,1,0)

*

By equation (4.1) it follows that if

= 1 - 1.4x, 2 + .3x,-. 0

then

x. = 1 - 1.4x. 1 + .3x . (4.6)

To achieve the sequence (1,1,0,0), x,. 2 must be less than or 0

equal to .4098. However, it is clear that the largest x,.,

value in equation (4.6) occurs at a minimum value for x, and

a maximum value for x,.,, which lies in the solution region in 0

Figure 54. The minimum x, value and maximum x•., value are

respectively .71371 and .4098. Using these optimum values in

equation (4.6), 6

72

,

* 0A ~ ~ *9 0 0

x-. - 1 + .3(.71371) - 1.4 .4098)

S.979003. 0

The symbol (i) indicates that we round to the number Cf

significant digits shown and that we round in the appropr:ate

(conservative) direction as previously defined. Th-s x _

value (not surprisingly) corresponds to the point w:th the

minimum x value in Figure 51, that is, the third iterate of

the subquad region which only gives the sequence {1,1,0,1).

Of course, this minimum x,.- value exceeds .4096, and

therefore, the sequence {1,1,0,01 is not realizable. Thus, we

have found a counterexample to the proposed homeomcrphism.

Furthermore, it is shown in Appendix D that the sequence

{0,0,0,0,0) is also analytically unrealizable. * *

-73

0 0.... 0. . , , 00r I I I 0ill .. . 1 I I -*

V. CONCLUSIONS 0

A. RUNS ANOMALY-FATAL FACTOR OR LIMITING FACTOR?

We have seen that the classical Henon map exhibits the

attributes normally accepted as characterizing chaotic

dynamical systems. These properties include sensitive

dependence on initial conditions, topological transitivity and

a dense set of periodic points. Despite this, however, we

have provided ample numerical evidence and rigorous analytical

proof that the proposed symbolic dynamics scheme h:TR--* for

generating pseudorandom binary sequences is:

1) not a homeomorphism for the proposed symbolic dynamics

scheme since it is not onto. (Because the H~non attractcr is

a subset of TR we can also conclude that h:HA -, X is not

onto.)

2) highly restricted in its viability as a pseudorandom
0

number generator.

We have shown that not all binary sequences are generated with

equal frequency. In particular we have shown that certain
S

sequences are not realizable and that others are very sparsely

attained. These facts support the observations and

conclusions of R6j~ne Forr6 which suggest that this scheme is
S

unsuitable as a reliable means of generating pseudorandom

numbers.

74

. 0 5 0 0 0

0U

The evidence suggests that the rux.s property severely O

limits the potential of the scheme for widespread practical

use. it is shown in reference 18 that subsequent elements of

the binary sequence may actually be predicted w.th 7 -th

accuracy by an artific-a1 neural network (compared to EC%

.accuracy for a coin flip), most likely due to the severity cf

the runs anomaly. However, because of its simpicity ano

nonlinearity there may exist some applications for which the

scheme would be well-suited. It is our belief that the

general idea of using a chaotic discrete dynamical system to

generate pseudorandom binary sequences, however, has merit and

deserves additional study.

B. FUTURE WORK FOR AN IMPROVED SYMBOLIC DYNAMICS

Our numerical results reflect the basic structure of the 0

attractor. Despite the lack of a homnecnorphism the structural

nature of the attractor is apparent in the binary output f

the symbolic dynamics scheme. Although the attractor is

accepted as possessing chaotic attributes, we believe that due

to the structure of this "chaotic driver" (the classical H'ncn

mapý pseudrrandomness is not fully realized in this scheme. 0

We believe that a sequence of more than four zeros is nct

possoble because the left fixed point is both repelli.ng an

not on the attractor. Contrarily, it has been shown that a 0

sequence of up to 23 ones is possible [Ref.16] . We conjecture

(as suggested by corr-utational evidence) that the sequences of

775

..

A

ones are possible because the right quadrilateral fixed pcn:r

is a saddle point. Specifically, the sequence of ones Is

iossible due to the attracting axis of the saddle pcin,. Sh.

s-gges:s that the symbolic dynamics scheme could be effec:zve

hf :here were such a saddle point on the attractor on bc:

s :es of the dynamic median x,,-.

Since the location and nature of the fixed points fcr the

Henon map depend on the (a,b) parameters of the map,

'Ref.l:p..70J there may exist parameter sets which crcv~de

this structure. The chaotic bands present in the bifurcation

diagrams suggest there exist many other (a,b) pairs that may

•:ve even more complicated dynamics. Proving the existence cf

a,' parameters that give us these desired characterist:cs is

cnv' the first step. it Is also required that a bcunde-i * E
ý.t:ractor exist for the associated parameters. Furthermcre,

Forre had the luxury of being provided a numer~cai-:

a-i:u-ated trapping region from which to take the oseucoranorm

nu-r=cer generator key. This region, If it exists at al, d

h be recalculated for the new {a,b. pair.

S cou'ld be proved that there does not exs an zc

Oa~r wn-ch gives rise to saddle points that cossess th÷

re= y mentioned attributes, then it may he posshee

s n:ther map which corresponds to a different attra:t:r

these qualitles. However, the ma-or asset tf 'he

-... nc= • s .ts utter simplicity which translates tot.e

s eneratizn of pseudorandom sequences.

76

S............. . • 9 .. e e o• . ,, • ,, _ _ • ,, • . .,0

o

Basing the symbolic dynamics scheme on the x value of each

iterate is simple but it is not clear that it is the most 0

effective. If we are willing to accept a more complicated

scheme we could base our split on a different linear median cr

a nonlinear median. The goal in choosing a given median would

be to bring parity to the runs property for the system of dual

saddle points while retaining the other properties previously

mentioned. A more complicated scheme might generate binar'y'

sequences more slowly, but the loss of speed may be warranted

to improve the runs property.

it may be argued that despite an improved system there

will still exist binary sequences that are unrealizable.

However, the severity of the associated runs anomaly could be

diminished should the shortest of these unrealizable sequences *
be of sufficient length. That is, we have seen that an

unrealizable 4-tuple was catastrophic in this case because the

problem of unrealizability translated to every subsequent n-

tuple. In fact, we must anticipate that as described

Chapter IV even more n-tuples will be unrealizable than

expected. The degradation of the system thus is directly

related t. the length (L) of the first unrealizable

sequence(s . Since a pseudorandom number generator is 7udged

by more than just the runs property criterion (see conclusicn

Ref.13) a system which possesses a "large" L-value may s:i"

provide an acceptable pseudorandom number generator.

77

0 -0

APPENDIX A: MAIN PROGRMS

NOTE: GRDCOMP PROGRAMS REQUIRE THE HENREAL PROGRAM TO RUN

% function [xmat, ymat] a grdco=p1(sp,W,Z)
% This function takes a point(W,Z)from the RT quadinitiates
a quad grid
% field based on a certain spacing, then iterates those grid
field points
% that match the binary string of (W,Z)[use(.1,.l) for now.
As long as
% the strings match, points are iterated using the Henon
recurrence. Only that •
% (those) points that completely match are finally plotted
according to the
% following scheme:
% b. original grid field points
% r* original (W,Z)
% go iterated field points with matching binary string 0
at nth iteration
% W+ iterated (W,Z) at nth iteration
% gx original xvec,yvec point(s) which matches binary
% string of W,Z. We also show how W,Z and
xvec(indices),yvec(indices) "walk" to the Henon attractor at
each iteration (with the attractor on screen). 0

o=iinspace(-l.33,1.32,500);
s=-.l083*o + .276;
u=linspace(l.32,1.245,500);
1.1-64*u -4.6718;
g=iinspace(-l.06,1.245,500);
h=.:533*g -. 3344;
e=linspace(-l.06,-l.33,500);
f=-3.407*e -4.1119;

split = .4098;
a = [-.1083 -1;-3.64 1;-.1562 1];
b = [-.2760;-4.6718;-.3344];
c = [split:sp:l.32]; 0
d = [-.6:sp:.5];

Lx, y1 = henreal'750,-l.0,-.25);
xline = [split split); yline = [-1.32 1.32];
lenc = length(c); lend = length(d);
xvec = zeros(l,lenc*lend); yvec = zeros(l,lenc*lend ;

if min((a*[w;z]) > b) == 0 I w < sclit 0
disp('initial value is not in the right quadr')
return;

end
k = 0;
for p = i:lenc

78

0

, 09 0 ! 9.. .

for r = l:lend0
k=k~l;
if max((a*[c(p);d(r)]) < b) ==0

xvec(k) = c(p); yvec(k) d=)
else

xvec(k) = -10; yvec(k) =-10;
end

end
end
xvec = reshape(xvec,lenc*lend,1);
yvec =reshape(yvec~lenc*lend,l);

m=find(xvec -- 10 1 yvec -~ -10);
xvec xvec(m); yvec = yvec(m);
xx =xvec; yy = yvec;
W~w =W;

indices = :length(xx); % [1 2 3 4 . ..

qvec =Length(xx);

q =indices;

lenq =length~xx)%

=-,tialization of q
p'txe~vc'.,,,r'xieyie'-)hl on;
plotCo.s, 'w. ''U,v, 'w. ', e, f,'w. ', g, h,'w. ' ; hold on;

title('Grid field and W,Z');pause;clg;hold off;
while length(q) > 1;0

axis(tI-l.32 1.32 -.6 .5]);
xO = yy + ones(sizecyy)) - 1.4*xx.^'2;
YO = .*x
wO = zz 1 - l.4-*ww."2;
zC = .3*wvd;

if wo > split
qtemp = find(xO > split IxO ==split);

else
qtemp = find(xO < split);

end;
-F length(qtemp) == 0,break;
else q =qtemp;

end
=i+ 1;% counts iterates where at

.eas:. one point matches
Ienq = length(q)
71,c-c = [gvec,length(q)];% plot of how 4 with same binary:

sequence
inoices = indices(q); % decreases each time through lccp

xx = xOlq); % preserves to next iterate those
matching values of

Try = 10(q); % xO and y0
w.w = W3;

-.9

zz = zo;
pause;

plot (xx,yy, 'g. ',wO,zO, 'w+' ,xli:.e,yline, 'w-) ;hold on;
plot (o,s, 'w. ,u,v, 'w. ',e, f, w. ,g,h, 'w.) ;hold on;

title)'Movement of points in grid with same binary
sequence')

pause; clg;hold off;
en~d
ax~s;
ve- = (l,'2) 7) (l:length(qvec))-l) ; 0
plot Al1:length(qvec))-l,qvec,'r',(l:length(qvec))-l,qvecvlý*
vec ,'b,
title('Decrease in # of grid points with same binary
sequen-ce vs 1l!2-n')
pause; cig;
% in this way, we need the index key 'indices' to tell to 0
which grid point the
% surviving iterate corresponds with respect to the original
xvec and yvec.

axis([-l.32 1.32 -.6 .5]);

,w.');hold on; 0
plot(xvec(indices),yvec(indices),'gx',W,Z,'r*');hold on;

t_-tle('W,Z and the grid point with same binary
sequence') ;pause;
hold off;
xnew = xvec(indices);
ynew = yvec(indices); % now we show a plot of how W,.Z and 0 S
the point

% that generates the same binary sequence
xnew, ynew

% walk around the attractor
axis([-l.32 1.32 -.6 .5]);
plot (xline,yline, 'w' ,x,y, 'b. ',o,s, 'w. ',u,v, 'w. ',e, f, w. ',g,h 0

hold on;
xne'wt = xnew;
ynewt = ynew;

wt = W
Zt = Z; S

for n = 1:i - 1
x~t = 1.0 - l.4*xnewt."2 + ynewt;
Y~t = .3*xnewt;
wOt = 1.0 - 1.4*wt.72 + zt;
zOt = .3*wt;

wt = w~t;
zt = zot;

xnewt = x0t;
ynewt = y0t;

plotx~t~~tgx',~t~~t,'*,S

80

40S

0

title('Movement of pt chosen on HA and matching sequence pt
until diverge');
pause; plot(xOt,yOt,lixl,wOt,zOt,li*,);
end 0
hold off;

81

S... . 9 9 0 t •,

% function [=mat, yzt] a grdco•p2(zv,W,Z)

% This function takes a ýW,Z) from the left quad, initiates a i
quad grid field

Sbased on a certain spacing, then iterates those grid field 0
points that
% match the binary string of XW,Z) [use (-1,-.25) for now .
As long as the
% strings match, points are iterated using the Henon
recurrence. Only that
% (those) points that completely match are finally plotted 0
according to the
% following scheme:
% b. original grid field points
% r* original (W,Z)
% go iterated field points with matching binary string
a: nth iteration S
% w+ iterated (W,Z) at nth iteration
% gx original xvec,yvec point(s) which matches binary
string of W,Z
% We then plot the iterates of W,Z and the point that mos=
closely matches
% its binary sequence. 0
o=linspace(-1.33,1.32,500);
s=-.1083*o±.276;
u=-!inspace(l.32,1.245,500);
v=3.64*u-4.6718;
g=linspace(-1.06,1.245,500);
h:._1533"g-.3344; 0
e=linspacek-l.06,-l.33,500);
f=-3.407*e-4.1119;
split = .4098;

a = [3.4074 1; -. 1083 -1; -. 1562 1];
b = [-4.1119; -. 2760; -. 33441;
c = [-l.32:sp:split]; 0
d = [-.6:sp:.5];

[x, y] henreal(750,-l.0,-.25);
le..c : ength(c); lend = length(d);

xline [split split]; yline = [-1.32 1.32];
xvec = zeros(l,lenc*lend); yvec = zeros(l,lenc*!end);

if min((a*[w;z]) > b) = 0 w > split S
disp('initial value is not in left quadr'ý
return;

end
k=0;
for p =l:lenc

for r = l:lend S
k=k+l;
if max((a*[c(p);d(r)]) < b) == 0

xvec(k) = c(p); yvec(k) = d(r);
else

xvec(k) = -10; yvec(k) = -10;

82

• • • __ • __ •0

S.. u • u . . .H. . . . , n u i i ,- .0.

end en

eend

xvec =reshape(xvec,lenc*lend,l); %mnakes a column vectcr
yvec =reshape(yvec,lenc*lend,l);

mn = find(xvec-= -10 1yvec-= -10);
xver = xvec(rn); yvec = yvec(in);
xx = xvec; yy = yvec;
WW =W; ZZ=

axis([-l.32 1.32 -.6 .5]);
indic-es l:length(xx); % [1 2 3 4 . ..

i 1 2;
gvec =length(xx);

q =indices;%

initialization of q
lenq = length(xx)
p o~vcyeb'WZr'xieyie'-) hold on;
pl~ot'o,s, 'w.',u,v, 'w.',e,f, 'w.',g,h, 'w.');hold off;

title('Grid field and W,Z');pause;clg;hold off;
while length(q) > I.;

axis([-l.32 1.32 -.6 .5]);
xC = yy + ones(size(yy)) - 1.4*xx.^~2; 0

wO = z-+1 - 1.4*ww7^2;
zO =.*w

if wO > split
qtemp = find(xO > split IxO ==split);

else
qteinp = find(xO < split);

end;
if liength(qteinp) == 0,break;
else q =qteinp;

end
i= i + 1

lenq = length(q)
qvec = [qvec,'Length(q)];

indices = indices(q);
xx =xO(q); % preserves to next iterate those

matching values of
yy = yO(q); % xO and yO
ww = wo;
z z = zo;

pause;
plýot ~xx,yy, 'g. ',wO, zO, 'w+' ,xline,yline, 'w-) ;hold on;
plot (o,s, 'w. ',u,v, 'w. ',e, f, 'w. ',g,h, 'w. ' ; hold off;

titie,<Moveinent of points in grid with same bi4nary
sequ,-ence';

pa 'use; clg
end

axis;
vec (1/'2).'((l:length(gvec) (-1);

83

plot C llength (qvec)) -l,qvec, 'r' , (1:length(qvec)) -l,qveo>1.
vec, 'b');
title('Decrease in # of grid pts with same binary sequence
as iter incr')
pause; cIg
% n this way, we need the index key 'indices, to tell to

which grid point the
% surviving iterate corresponds with respect to the original
xvec and yvec.

axis(K-l.32 1.32 -.6 .5]);
plot(o,s,'w.',u,v,'w.',e,f,'w.',g,h,'w.');hold on;

e,y~i~ne, 'w' C
itileC'W,Z and the grid point with the same binary
sequence' ;pause;
hold off; 0
xnew = xvec(indices);
ynew = yvec(indices);
axis([-l.32 1.32 -.6 .5]);

pl~ct xlime,yl ine,'w' ,x, y, 'b. ', o,s, 'w. ', u,v, 'w.',,e, f, 'w. ', g, h
,'w. ')

hold on; 0
xnewt = xnew;
ynewt = ynew;

wt = W;
zt = Z;

for n = 1:-4 - 1
x~t = 1.0 - 1.4*xnewt.72 + ynewt; 0
yOt = .3*xnewt;
w~t. = 1.0-- l.4.*wt.72 +# t
zot = .3*wt;
wt = w~t;
zt = zot;

xnewt = x~t;
ynewt = y~t;
plot(x~t,y0t,'gxl,w~t,z~t,'r*');hold on;

title('Movement of W,Z and matching sequence pt until
divergence') ;pause;

end 0
hold off;

84

0 0

% function [xuat, ynat] a grdcoup3(sp,WZ)
% This function takes a point,kW,Zifrom the RT quad and
iterates the point n
% times in order to ensure the point is on the Henon 0
at:ractor ensuring
% that the nth iterate is in the left quadrant). It
:n.tiates a grid field
% based on a certain spacing, then iterates those grid field
pcints that
% match the binary string of (wnew,znew) (use (-l,-.25) for 0

Z•. .As lcng as
--he str:ngs match, points are iterated using the Henon

rec'urrence. Only that
Sýthrcse) points that completely match are finally plotted

ac iing to the
% f:1!cwing scheme: S

b. original grid field points
% .•" original (W,Z)

% go iterated field points with matching binary string
at ntn iteration
% w_ iterated (W,Z) at nth iteration
% gx original xvec,yvec point(s) which matches binary 0
string Cf W,Z
"% We also show how W,Z and xvec(indices),yvec(indices)
"walk" to the Henon
% attractor at each iteration (with the attractor on
screen).
o=':nspace(-l.33,l.32,500); 0 0
s=-.10833o + .276;
u=linspace (1. 32,i1.245, 500);

v=3.64*u -4.6718;
g=!inspace(-l.06,1.245,500);
h=.i533*g -. 3344;
e-1inspace(-l.06,-l.33,500); 0
f:-3.4C7>e -4.1119;

split = .4098;
a = -. 1283 -1;-3.64 1;-.1562 1];
b = r_.-760Q. 4 6718;-.334 4];
C = spot.:sp:l.32];
d -. 6:sp:.5]; 0
Ix, y] = henreal(750,-l.0,-.25);
xline = [split split]; yline = [-1.32 1.32];
lenc = length(c); lend = length(d);
xVec = zeros(l,lenc'lend); yvec = zeros(l,lenc*lendý;

k : 1;
for p = l:lenc 0

for r = l:lend
k=k~l;
if max((a*[c(p);d(r)]) < b) == 0

xvec(k) = c(p); yvec(k) = d(r);
el ý,e

85

•0

xvec(k) = -2.0; yvec(k) =-10;

end
end

end
xvec = reshape(xvec, lenc*lend,1 ;
yvec = reshape(yvec, lenc*lend,1)

mn = find(xvec-= -10 1 yvec-= -10);
xvec = xvec(m);
yvec = yvec (M) ;

wattr = w; % This preserves the values of W,Z
zattr = z;
for j = 1:40 % This
ensures wat~tr,7Attr is

wattr(ji~l) = 1.0 - 1.4*wattr(j)%2 zattr~j); % on the
att racltor

zattr(j+l) = .3*wattr(j);
if j > 20 & wattr(j+l) > split, break;
end

end
wnew = wattr(j~l); % preserves value on attraz=:r
wattr, zattr
:new = zattr(j+l);

wattr = wnew;
:-attr = znew;

xx = xvec; % preserves the values of xv.ec & yvrec
yy = yvec;

axis([-l.32 1.32 -.6 .51);* *
indices = :length(xx); % [21 2 3 4 . ..

qvec =length(xx);

q =indices;

lenq =length~xx) % i~nitialization of q

on;
plot (0,s, 'w. ', u,v, 'w.', e,t, 'w. ', g,h,'w.); hold off;

title('Grid field and point chosen on attractor');pause;clg;
while length(q) > 1;

axis([-l.32 1.32 -.6 .5]);
xO = yy + ones(size(yy)) - 1.4*xx.^2;
yO = .3*xx;
wO = znew + 1 - 'L4*wnew.^2;
zO = .3*wnew;

if wO > split
qtemp = find(x0 > split IxO ==split);

else
qtemp = findixO < split);

end;
if length(qtemp) == ,break;
else q = qtemp;
end

86

+.=i*1 counts iterates where at least
one point matches

qvec = [qvec,length(q)];% plot of how # with same binary
sequence

lenq = length~q)
indices = indices(q); % decreases each time through 'Loop4

xx = xO (q) ; % preserves to next iterate those
cmarchIng values cf

yy=Y yOq) ;%xO and yll
wnew = wO;
-.new = zO;

pause;
plo~t(xx,vy,,ý,'g.',wO,zO,'w-',xline,yline,'w-');hold on;

title('Movement of points in grid with same binary
sequence') 0

pause; clg;hold off;
endo
axis([l 2 3 4h);axis;
vec = (IL,'2).7"((l:length(qvec) -1);
plot(lI:length(qvec))-l,qvec,'r',(l:length(qvec)-'l,qvec~l *
vec ,'b'); 0
tiltle('Decrease in # of grid points with same binary
sequence vs 1x,2"rn')
pause; clg;
% in this way, we need the index key 'indices' to tell! to
whic-h grid point- the
% surviving iterate corresponds with respect to t-he original 0
xvec and yvec.

axlsKr-l.32 1.32 -.6 .5]);
plot ~xline,yl-ýne, 'w',x,y, 'b. ',o,s, 'w. ',u,v, 'w. ',e, f, 'w. ',g,n

,w';hold on;
p~txe(ýd-e)ye~ndcsglw~rztr'* ;-cld
on;0
tit-le('wattr,zattr & grid pt with same binary
sequence') ;pause;
hold o-ff;
xrnew = xvec(indices);
ýriew = yvectindices); % now we show a plot of how
wattr,zattr and the point

% that generates the same binary sequence
xnew, ynew

% walk around the attractor
axis([-l.32 1.32 -.6 .5]);
plot(xline,yline,'w',x,y,'b.',o,s,'w.',u,v,'w.',e,f,'w.',a-,n
' w.) ;I

hold on;
xnewt = xnew;
ynewt = ynew;
wattrt = wattr;
zattrt = zattr;

87

0

tor n = 1:i -
x~t =1.0 -1.4*xrewt.-2 *ynewt;
y~t = .3 xnewt;
wOt: = 1.0 - 1.4*wattrt.^ + zactrt;
zOt = .3*watytrt;

wattrt = w~t; i
zattrt zOt;
xnew, = xolt;
Ynewt = y0t;

pl-ot x0t yot,'gx' ,w~t, zOt, 'r 0'ý:.-'e;Movement. of pt chosen on HA and mat-ching sequence pt-
u;nt! d, verge'
pause; plot(xot,yot,'ix',wot,z-Ot,'i*');
en~d
hold. off;

0

0

*

0

880

0

0

% function (mzat, yzat] a grdconp4(sp,W,Z)
* 2{NLY DIFF B7TJN 3&4 :S THAT 4 WEEýS WU.A.DR, '_ USES WHCLE
RECTANGLE.
% This funct-ion takes a pointW,Z'frc-rn the quadr and
iterat-es the point n
Stmes in order to ensure the point:~ nte eo

a-tractor (ensuring
tna t-he nth iterat~e is in the left quadrant).1
in--ates a grid fle'd
'C~ased on a certain spacing, then iterat-es those grid f

match tebinary string of ýIwreW, Znew, [use I-
As !-ong as

-h~e st-r-ngs match, point-s are iterated using the Hencýn
r-currence. .Cniv that

`-n'se points -hat completely match are finally p!lmmei-
aLcr ding t-o the

I I:, -4-n g s ch eme:
b. original grid field points

r* orioinal tZ)
(Jo iterated field points with matching binar.y szmr-ngo

a-- ntn- _teraticn
'W + i:erated (K, Z) at nth iterat~ion

gx origi-nall x,.ec,yvec point (s) -which mat-ches bia-
Str~ng of 'K,7
fc~mat: long
; 5'Xe also show how W,Z and xvec(indies),yvec-indices
"walk" to the Henon 0
iza -ractor at each Iteration (with the attractor on
sceen,

rIiscace) -1.33,1.32,500);
s= .,83*C + .2ý76;

11 =lnspace(I.32,l.245,500);
-.=364*u -4.6718; 0

g=!Inspace(-1.C6,1.245,50C);
'533*g -. *3344;

e=ispace(-1.06,-l.33,500);

scl:= .4098;
a 3.4`174 1; -.1083 -11; -.1562 !11;

[-I .32:sp:split];
i '-.6:sp:.5];

if min((a*[w;z]) > b) == 0 i w ,split
disp('initial value is not in left quadr'
return;

end
*x, y1 = henreal(750,-1.0,-.25);
xiine = [split- split]; yline = [-1.32 1.32];
lenc = length~c); lend = length(d);
xvec = zeros rl,lenc*lend; ; yvec = zeros(l,lenc*lIend'ý

89

for p = 1:lenc
for r 1:lend

k k +1;0
%This next section puts everything outside of the quad to

-,-1i')
if max((a *[c(p);d(r)]) < b) == 0

xvec(k) =c(p); yvec(k)=d(r);
else

xvec(k) -10; yvec(k) = -10; 4
end

end
end
xvec = reshape(xvec,lenc*lend,l);
yvec = reshape(yvec,lenc*lend,l);

mn = firid(xvec -= -10 1yvec -= -10); 40
x,:ec = xvec (in)
yvec = yveo (i);
wattr = w; % This preserves the values of W,Z

for] 1:40%
ensures wattr,zattr is 0

wattr(j+l) = 1.0 - l.4*wattr(j)^2 + zattr~j); %on the
att ractor

zattr(j-sl) = .3*.wattr(j);
if j > 20 & wattr(j+1) < split, break;
end

end 0 0
wnew = wattr(j+l);
znew = zattr(i +I);

wattr = wnew;
za..atr = znew;

xx = xvec; % preserves the values of
xlvec &yvec

yy = yvec;
axis([-l.32 1.32 -.6 .5]);

ndies= :length(xx); % [1 2 3 4..
i=1;

qvec = length(xx);
q = indices;

lenq = length(xx)
plot(xvec,yvec,'b.',wattr,zattr,'r*,,xline,yline,'w'';hoLdj

on;
pi-lot (o,s, 'w. ,u,v, 'w. ',e, f, 'w. ',g,h, 'w. ') ; hold off;

title('Grid field and point chosen on attractor');pause;c:la;
while length(q) > 1;

axis(tj-l.32 1.32 -.6 .5]);
xG = yy + ones(size(yy)) - l.4*xx.'2;
YO = .*x
wO = znew +1 - l.4*wnew."2;
zO = .3*wnew;

900

if wO >= splita
qtemp = find(xO > split I xO ==split);

else
qtemp =find(xQ <. split);

end;
if length~qtenp) == O,break;
else q =qtemp;

end;
= i 1; % counts iterates where at least

one point mat'2hes
qv.ec = [qvec,length~q)];% plot of how # with same binar-y

sequence
lenq = length~q)

:rff.i::es = indices~q); % decreases each time through flocp
xx = xQ(q); % preserves to next iterate those

n~at-ching values of
le-y = yo~q); % xO and yO

wnew = wO;
2new = z0;

pause;
plo-t(xx,y, Y'g.',wO,zO, 'w+' ,-zine,ylýine,'w');hold on;

title('Movement of points in grid with same binary
szequence');

pause; clg; hold off;
end
axisi[l 2 3 4]); axis;
vec = (l/'2) . ((l:length(q-,ec) (-1);
plct((l:length(qvpech)-l,qvec,'r',(l:length(qvec))-l,qvzecJ!)
vec, 'b'',
title('Decrease in # of grid points with same binary
sequence vs lý-2^n')
pau-se; clg;
% i this way, we need the index key 'indices' to tell to

which grid point the
% surviving iterate corresponds with respect to the original.
xvec and yvec.
axis)FL-l.32 1.32 -.6 .5]);
plot rxlýine,yline, 'w' ,x,y, 'b. ',o,s, 'w. ',u,v, 'w. ,e, f, '.',~

.'v;..';hoid on;
plot(xvec(indices),yvec(indices),'gx',wattr,zattr, 'r*');

%hcid on;
title('wattr~zattr & grid pt with same binary
sequence') ;pause;
hold off;
xnew = xvec(indices);
ynew = y'vec(indices); % now we show a plot of how
wattr,zattr and the point

% that generates the same binary sequence
xnew, ynew

% walk around the attractor
0

91

axis([-1.32 1.32 -.6 .5]);
plot(x~y,'b.',xline,yline,'w-',o,s,'w.',u,v,'w.',e,f,'w.',g,
h, 'w) ; hold on;
xnewt = xnew;
ynewt = ynew;

wattrt: = wattr;
zalttrt = zattr;
fo~r n = l:i - 1

x~t = 1.0 - 1.4-xnewt.72 + ynewt;
v~t- = .3*xnewt;
wot = 1.0 - 1.4*wattrt.'-2 + zattrt;

C- =. 3*wattrt;
wattrt =wOt:;

zattrt =zOt;

xnewt =x~t;

yrxewt =y~t;0

ti.IeiMovement of pt chosen on HA and matching sequence pt
until diverge');

end
hold off;

92

% function Cuzat, ymat] proof1(spcr9,&pfn,incr)
% THIS FUNCTION GOES BACK TO **GRDCOMP1** AND USES IT CW7EP U

MANY SP VALTUES.
% This function takes a point (W,Z) from the RT quad, initiat-es
%a quad grid field based on a certain spacing, then iterates
%those grid field points that match the binary string of
%:WZ7[use(.l,.l) for now. As long as the strings match,
%poir~ts are :t?-erated using the Henon recurrence. Only t'hat
'kt-hzose~points that completely match are finally consideied.

w = .5;
z= .1;

split =.4098;

fc-'r sp =spfn:incr:spcrs, % MAJOR OUTER LOOP
sp =sp

a =[-.1083 -1;-3.64 1;-.1562 1];
b = [-.Z"60;-4.6718;-.3344];
c rsplit:sp:l.32J;

d = r .- sp . 1
lenc = length~c); lend = length(d);
xvec = zerosjl,lenc*lend) ; yvec = zeros(l,lenc*l'end',

if mi4n((a*[w;z]) > b) == 0 1 w < split
dispk'initial value is not in the right quadr')
return;

end
=0;

for p = l:lenc
for r = l:lend* *

k=k+l;
if max((a*[c(p);d(r)pý < b) ==

xvecfk) = c(p); yvec(k) =~)

else
xvec(k) = -10; yvec(k) = -10;

end
end

end
xlvec = reshape(xvec,lenc*lend,l);
y7vec = reshape(yvec,lenc*lend,l);

m = find(xvec -- 10 1yvec -= -10);
xvec = xvec(m); yvec = yvec(m);0
xx = xvec; yy = yvec;
WA7 = W; Z Z =Z;
indi-ces 1 :length(xx); % [1 2 3 4 . . .1

q-:ec length(xx);
q =indices;

lenq =length(xx);

while- length(q) > 1;
x.-- = yy +ones(size~yy))-l.4*xx.72;

Y0= .3*xx;
wO = zz + 1 - .4*ww.-2;
zO = 3 *.,qw;

93

if wO > split
qtemp = find(xO > split IxO == split);

else
qtemp = find(xO < split); •

end;
if length(qtemp) == O,break; 4
else q qtemp;
end

i = i + 1; % counts iterates where at
least one point matches S

lenq = length(q);
qvec = [qvec,length(q)];% plot of how # with same binary

sequence
indices = indices(q); % decreases each time through loop

xx = x0(q); % preserves to next iterate those
matching values of •

yy = yO0q); % x0 and y0
wVw = w 0;
z = zo;

end
% In this way, we need the index key 'indices' to tell to
which grid point the 0
% surviving iterate corresponds with respect to the original
xvec and yvec.
xnew = xveclindices);
ynew = yvec(indices); % now we show a plot of how W,Z and

%the point that generates the same
%binary sequence xnew,ynew walk around the attractor • 0

xnewt = xnew;
ynewt = ynew;

wt = W;
zt = Z;

for n = l:i - 1
x0t = 1.0 - 1.4*xnewt.^2 + ynewt; 0
y0t = .3*xnewt;
wOt = 1.0 - 1.4*wt.-2 + zt;
z0t = .3*wt;

wt = w0t;
zt = zot;

xnewt = x0t; 0
ynewt = y0t;

end
nvec = [nvec,n];
spvec = [spvec,sp];
clear xvec;clear yvec;
end % END OF MAJOR LOOP •
axis;

plot(spvec,nvec, w*');
title('SP VS. ITERATIONS UNTIL DIVERGENCE');

94

••1
" S. 5m m m 5 5m .. 0 ... 0 ...

S

% function (zast, ynat] - proof2(spcrs,spfn,incr)
% THIS FUNCTION GOES BACK TO **GRDCOMP2*" AND USES IT OVER
MANY SP VALUES.
% This function takes a kW,Z) from the left quad, initiates a 0
quad grid field
% based on a certain spacing, then iterates those grid field
points that
% match the binary string of (W,Z) [use (-1,-.25) for now].
As long as the
% strings match, points are iterated using the Henon 0
recurrence. Only that
* thoseý points that completely match are finally
cons idered.

-w = -1. 0;
z -. 25;

split = .4098;
for sp = spfn:incr:spcrs, % MAJOR OUTER LOCP

sp = sp
a = [3.4C-1 1; -.10R3 -1; -. 1562 1];
b = [-4.1119; -. 2760; -. 3344];
c = [-l.32:sp:split];
d = [-.6:sp:.5]; 0

lenc = length~c); lend = length(d);
xvec = zeros(l,lend*lenc); yvec = zeros(l,lenc'lend);

if min((a*[w;z]) > b) == 0 I w > split
dispt'initial value is not in the left quadr')
return;

end 0 •
kfo;
for p = i:leno

for r = l:lend
k=k+I;
if max((a*[c(p);d(r)]) < b) == 0

xvec(k) = c(p); yvec(k) d(r); 0
eise

xvec(k) = -10; yvec(k) = -10;
end

end
end
xvec = reshape(xvec,lenc*!end,l); %makes a column vector 0
yvec = reshape(yvec,lenc*lend,l);

m = firnd(xvec-= -10 1 yvec-= -10);
xvec = xvec~m); yvec = yvec~m);
xx = xvec; yy = yvec;
WW = W; ZZ = Z;
indices = 1:length(xx); % [1 2 3 4 . . .

i = 1;
qvec = length(xx);

q = indices; % initialization of q
lenq = length(xx);

while length(q) > 1;

95

• • • •• • •

0 ,S m m0mm m m•. .. 0 5

x0 = yy + ones(size(yy)) -1.4*xx.^2;

wO zz -, 1 - 1.4*ww.^2;
zO .3*ww;

if WO -, split
qtemp = find(xO >split 1xO ==split);

else
qternp = find(xO < split);

end;
if length(qternp) == O,break;
else q qtemp;
end

=i+ 1
lenq = length(q);
qvec = [qvec,length(q)];

,ndices = indices(q);
xx = xQ(q); % preserves to next iterate thcze

mat-ch-ing values of
yy = yC(q); % xO and yO
ww = wo;
z z = zO;

end
% T n this way, we need the index key 'indices' to tell to
which grid point the
% surviving iterate corresponds with respect to the original
xvec and yvec.

xnew = xvec(indices);* *
ynew = yvec(indices);

xnewt = xnew;
ynewt = ynew;

Wt =W
zt = Z

for n = 1:i - 1
x~t =1.,0 - l.4*xnewt.^~2 + ynewt;
yO-t = .3*xnewt;
wOt = 1.0 - l.4*wt.A2 +~ zt;
zOt = .3*wt;
wt = w~t;
zt = zOt;

xnewt = xOt;
ynewt- = y0t;

end
nvec = [nvec,n];

spvec = [spvec,spl;
cl~ear xvec;clear yvec;
end % END TO MAJOR OUTER LOOP

plotr spvec,nvec, 1w*1)
ti~tle('SP VS. ITERATIONS UNTIL DIVERGENCE');

96

% function [mat, ymat] = proof3(9pcrs,spfn,incr)
% THIS FXN USES (W,Z)={-!,-.25,. ONE ATTR PT IS COMPARED
OVER MANY SP VALUES
% ,ONLY DIFF BTAN 3&4 IS THAT 4 WEEDS QUADR,3 USES WHOLE
RECTANG3LE.
i This n takes a point(W,Zfrom the quadr and
":terates the point n
S-imes on crder to ensure the point is on the Hen=n

•tractor ensuring
% that the nth iterate is in the left quadrant). It
ini-iates a grid field
i ased on a certain spacing, then iterates those grid field
p' nts that
i ma-cn --he btnary string of ,wnew,znew) [use (-i,-. -- ror

As long as
e strings match, points are iterated using the Hen=n

rec'-rrene. -nlv that
-t cse= points that completely match are finally

SrI: 0

a ir w; % This preserves the values of W,Z
za t--' : z;

fsr • = :41'
ensures wa.tr, zattr is

wattr l. = .n -1.4*wattr(j)^2 + zattr(j); % on tneattractor 0 0
zattr -'Li = .3*wattr(j);

if 20 & wattr(j+l) split, break;
eno

end

wnew = wat-rj+l1;
znew = zattr(j-l); •
for sp = spfn:incr:spcrs, % MAJOR OUTER LO0?

sp = sp
wattr = wnew;
zattr = znew;

a = -. 1%3 - ; -3.64 1; -.1562 1i];
b = [-.2760;-4.6718;-.3344];
c = [spiit:sp:1.32];
d = r-.6:sp:-5]',

ienc= length(c); lend = length(d);
xv.'ec = zercs(l,lenc*lend); yvec = zeros(l,lenc'lend:;

Tm:n(,,a*[w;z]) > b, == C i w < split
disp('initial value is not in right quadr''
return;

end
k=G;
for p = l:lenc

for r = !:lend

97

• • •• • • •• •0

k=k+l;
% This next section puts everything outside of the quad

to (-I0,-I0)

if max((a * [c(p);d(r)]) < b) == 0 0
xvec(k) = c(p); yvec~k d~r);

else
xvec(k) : -10; yvec(k) :-I ;
end

end
end 0
xvec = reshape(xvec,lencwlend,Dl;
Vvec = reshape(yvec,lenc*lend,l);

m = find(xvec -= -!0 i yvec -= -10);
xvec = xvec(m); yvec - yvec(m);
xx = xvec; yY = yvec;

S
indices = l:length(xx); % [1 2 3 4 .]

i = 1;
qvec length(xx);
q = indices;
lenq = length(xx);

wh:ie length(q) > 1; 0
xO = yy + ones(size(yy)) - 1.4*xx.^2;
YO = .3*xx;
wO = znew + 1 - 1.4*wnew.^2;
zO = .3*wnew;

if wO >= split
qtemp = find(xO > split I xO == split); * 0

else
qtemp = find(xO < split);

end;
if length(qtemp) == O,break;
else q = qtemp;
end; 0

i = i + 1; % counts iterates where at least
one point matches

qvec = [qvec,length(q)]; % plot of how # with same
binary sequence

lenq = length(q);
indices = indices(q); % decreases each time through loop 0

' Xtj, pr..-.-es tn next- iterate those
matching values of

yy = yO(q); % xO and yO
wnew = wO;
znew = zO;

end
% In this way, we need the index key 'indiices' - '-ell to
which grid point the
% surviving iterate corresponds with respect to the original
xvec and yvec.
xnew = xvec(indices);

98

• • • •• • •0

0lf 0,. T " • 0 0 .. 0, - -

ynew = yvec(indices); % now we show a plot of how
wvat'tr,zatt.r and the point

% that generates the same binary sequernze
xrnew, yrew0

% walk arcuni the attractor
xnewt xnew;
yrnewr = ynew;

wa " =wattr;
= attr;

x,- : = 1.) - .4*xnewtJ -- yrew,;
yt= .3*xnewt;

= .0- l.4*wattrt. zattrt;
=I~ .3*wattrt;

,.,a tr t .4 't

Xnewt x'Dt;

S-ec

clear xvec; clear yvec;

plotispvec,nvec, 'w*')
::týe 'SP VS. ITERATIONS UNTIL DIV..ERGENCE';

0 0

* function [zmat, yuat] a Proof4(xpcrs,xptn,incr)i
v T-':S FXN USES \'Z=- (,-. .2 5. ONE ATTR PT IS COMFARED-

IVRMANY SPF VA LU ES x

S:!,LY, :DIF-' 87AN 3&L4 'IS THAT 4 WiEEDS :UIAR, 3' UýSES W.ýHOLE_ 0

t: a:. 'k es a p-2i n t W, Z1f r :)r he q,_la dr a nd
-era-tes the pcint_ n.

orier toens,'-r the Pc:r. -- , s _n t:he Hen---
a- :t- i ý,

-~.a :hr.th cterate .s i- ' lef Iett adrarnt. t
ia a g: r fec

oi7!ln -a :e r, a s pa c ng, I'-en i e ratýes, thos e g rd -j

Z:narv oýf wrnez,:ew se -,.

z .. m ao, L-:rnt az-re terated -usirg the Henon 0

vee~ nath r ýrai

% hspreser.~ste.l~e

e% ersures watt r, zat':1

- 2 & att~+l split--, break;

=ýrs spfn.:in-r:spc-rs, % MAJFCUE'R L0T

4 .. ; -.2176 ; -. 33441;

lergtn' c;; lend =en gt1h>
zeros l~er.:*Iend ; yvec zerosl,!,ernc*_endý
rin!(a*rw;zl, bý s= p I

d.p .nitýal .val-e is noin left q,,adr'
.s ' al

en :in

e nr

r r

%This next section puts everything outside of the ~a

if rnax(a cpý;dir>j <. h ==

xv-ecrk = cc-l vvec~k = drý;
else

xveCY&' -1 ; .'e:'k -0:;

x~7ýreshapexec I
=reshape 'ee:, end,

7, = find xvec -= ,,,ec

= xv ec :rs = M.egtx

'engrh xx234...

q idies;

I-etg h xx1

.r - ones s~:.e y *
YD .3xx;

- 4wnw -2;

q~m flnd xl split Xl = cu
else

if lengm qmernp =0, break;
else q qrerp;

- -% counts :terates whrie aý
:ne 7cin:r~ matches

= -clnt < % plot of h:ow wimtn sare
binarvy sequence

len - ngmh~q);
indc- inices~q n decreases each t mv hro>~gn

XX= xc. g ; %preserves to next .terate mn:hcý
7namrhing values of

= yý:q. ; % Kl and y'

zn..w w, ;

* :n this way, we need the index Aey 'indices' to me!!t
ývic grid point the
ý- su-r-.,v.vng iterate corresponds with respect: to the ý=iv
xv.,e L and yvec.
xnew,% = xvec~indices);

101

ynew = yvec(indices); % now we show a plot of howwattr,
% zattr and the point that generates
%the same binary sequence xnew,ynew
% walk around the attractor0

xnewt =xnew;
ynewt zynew; A
wat!.rt zwattr;
zattrt zzattr;
f__ n =l:i - 1

xC'c 1.0 - 1.4*xnewt.^2 + ynewt.; 0
yOt = .3*xnewt;
w,':t = 1.0 - l.4*wattrt.^2 + zattrt;
zct = .3*wattrt;

wa~tcrt = wOt;
zattrt = zOt;
xnewt = x0t; 0
ynewt = y0c;

end
nvec = [nvec,nl;
spvec = Ijspvec,sp];
clear xvec; clear yvec;
end % END TO MAJOR LOOP 0
axis;

n~tspvec..nvec,'w*1);
t-it~le('SP VS. ITERATIONS UNTIL DIVERGENCE');

102

-j

% function [xmat, ymat] - prf1(spcrs,spfn,incr)
% ThIS function takes thirty-one points (Wx,Z) from the FT-
quad, initiates a N
% quad grid field based on a certain spacing, then Iterar-e-S
those grid field
t pc--nts that match the bnm'string of (W,Z)[use(l, .1
for now. As long as
% the strings match, pcints are iterated using the Henon
recu-rrence. Only that
% ýthose) points that completely match are finally
=osidered.

f c-r- w =.5:.02:1.1 % MAJOR OUTER T'7

.1;
II=ii +1

sclit ==.4098;

fcr sp spfn:incr:spcrs, % MINOR OUTER LOOP
=r s p

a = [-.1083 -1;-3.64 1;-.1562 1];
b = [-.2760;-4.6718;-.3344];
c = [split:sp:1.321;
d-= r.E:sp:. 5 1;

lerc = length(c); lend = length~d
xveoc = zeros $l,lenc*lend); yvec = zeros(l7,Ienc*lend.

ormin(a*Tw;z]) > b) == 0 1 w < split
disp('initial value is not in the right quadr')

edreturn;

for p =1:l1enc

for r = l:lend

if max)(a*[c(p);d(r)]) < b) == 0
xvec(k) = c(p); yvec(k) =d~r');

e-se
xvec~kI = -10; yvec(k) = -10;

end
end

endA

-K-.ec = reshape(xvec,lenc*lend,l);
vv,-.ec = reshape(yvec,1enc*lend,l);

.7, = find ~xveC -= -1i) I yvec -- 10);
x-iec = xvec(m); yvec = yvec(m);
xx = xvec; yy = Y*vec;
WW = W; Z Z = Z

in_4_e - :length(xx); % [12 3 4 . ..

qvec =lengthý(xxK;

a =indices;

lenq =length(xx);

103

while length(q) > 1; i
xO = yy + ones(size(yy)) - 1.4*xx.^2;
yO = .3*xx;
wO = zz + 1 - 1.4*ww.^2; 0
zO = .3*ww;

if wO > split
qtemp = find(xO > split I xO == split);

else
qtemp = find(xO < split);

end; 0
if length(qtemp) == O,break;
else q = qtemp;
end

i = i + 1; % counts iterates where at
least one point matches

lenq = length(q); 0
qvec = [qvec,length(q)];% plot of how # with same binary

sequence
indices = indices(q); % decreases each time through loop

xx = xO(q); % preserves to next iterate those
matching values of

Ty = yO(q); % xO and yO 0
ww = wO;
zz = zO;

end
% In this way, we need the index key 'indices' to tell to
which grid point the
% surviving iterate corresponds with respect to the original •
xvec and yvec.
xnew = xvec(indices);
ynew = yvec(indices); % now we show a plot of how W,Z and
the point

% that generates the same binary sequence
xnew,ynew 0

% walk around the attractor
xnewt = xnew;
ynewt = ynew;

Wt = W;
zt = Z;

for n = l:i - 1 S
xOt = 1.0 - 1.4*xnewt.^2 + ynewt;
yJt = .3*xnewt;
wOt = 1.0 - 1.4*wt.^2 + zt;
zOt = .3*wt;

wt = wOt;
zt = zOt; •

xnewt = x0t;
ynewt = yOt;

end
nvecl = [nvecl,n];
spvecl = [spvecl,sp];

104

0 0

O S S 0 0 0 9 --

Clear xvec;clear yvec;e
end % END MINOR LOOP
nvec2 = [nvec2,nvecl);
spvec2 = [spvec2,spvecll;
clear xvec; clear yvec;
end % END MAJOR LOOP
axis([O xnax(spvec2) 0 max(nvec2)1);

plot spvec2,nvec2, 'w.'ý
tr.:le'SPVS. ITERATIONS UNTIL DIVERGENCE');

0

105

% function [Cuat, ymat] a prf2(spcrs,spfn,incr) 6
% THIS FUNCTION GOES BACK TO **GRDCOMP2W* AND USES IT OVER
MANY SP VALUES.
% (AND OVER THIRTY-ONE W,Z VALUES) 0

% This function takes a (W,Z) from the left quad, initiates a
quad grid field
% based on a certain spacing, then iterates those grid field
points that
% match the binary string of (W,Z) [use (-1,-.25 for now].
As long as the 0
% strings match, points are iterated using the Henon
recurrence. Only that
% those) points that completely match are finally
considered.

ii = 0;
for w = -. 80:.04:.4 % MAJOR CUTER L7)'P 0

z : -. 01
ii = ii + 1

split = .4098;
for sp = spfn:incr:spcrs, % MINOR OUTER LOOP
sp = sp

a = [3.407 1; -. 1083 -1; -. 1562 1]; 0
b = [-4.1119; -. 2760; -. 3344];
c = [-i.32:sp:split];
d = [-.6:sp:.5];

lenc = length(c); lend = length(d);
xvec = zeros(l,lend*lenc); yvec = zeros(l,lenc*lend);

if min((a*[w;z]) > b) == 0 I w > split 0 0
disp('initial value is not in the left quadr')
return;

end
k=0;
for p = l:lenc

for r = 1:lend 0
k=k+l;
if max((a*[c(p);d(r)J) < b) == 0

xvec(k) = c(p); yvec(k) =d(r);

else
xvec(k) = -10; yvec(k) = -10;

end •
end

end
xvec = reshape(xvec,lenc*lend,l); %makes a column vector
yvec = reshape(yvec,lenc*lend,l);

m = find(xvec-= -10 1 yvec-= -10);
xvec = xvec(m); yvec = yvec(m); 0

xx = xvec; yy = yvec;
WW = W; ZZ = Z;
indices = l:length(xx); % [1 2 3 4 . . .

i = 1;
qvec - length(xx);

106

S

0 0 S 0 09... • 0_ _ 0

o

q = indices; %
initialization of q

lenq = length(xx);
while length(q) > 1; 9

xO = yy + ones(size(yy)) - .4*xx.^2;
YO = .3*xx;
wO = zz + 1 - 1.4*ww.^2;
zO : .3*ww;

if wO > split
qtemp = find(xO > split I x0 == split); 0

else
qtemp = find(x0 < split);

end;
if length(qtemp) == 0,break;
else q = qtemp;
end 0

Si +l;
ienq length(q);
qvec [qvec,length(q)];

indices indices(q);
xx xO(q); % preserves to next iterate those

matching values of 0

yy = y0(q); % xO and y0
ww =wo;
zz : W0;

end
% In this way, we need the index key 'indices' to tell to
which grid point the • 0
% surviving iterate corresponds with respect to the original
xvec and yvec.

xnew = xvec(indices);
ynew = yvec(indices);

xnewt = xnew;
ynewt = ynew; 0

wt = W;
zt = Z;

for n = 1:i - 1
x0t = 1.0 - 1.4*xnewt.^2 + ynewt;
y0t = .3*xnewt;
wOt = 1.0 - 1.4*wt.^2 + zt;
zOt = .3*wt;

wt = wOt;
zt = zOt;

xnewt = xOt;
ynewt = yOt;

end

nvecl = [nvecl,n];
spvecl = [spvecl,sp];

clear xvec;clear yvec;
end % END TO MINOR OUTER LOOP

107

• • • 9• • . •0

nvec2= (nec2,necl0

npvec2 = [npvec2,npvecl];

end % END TO MAJOR OUTER LOOP
axis([O max(spvec2) 0 max(nvec2)1);

plot spvec2,nvec2, 'w.') ;
title 'SP VS. ITERN'IONS UNTIL DIVERGENCE');

0

0

108

% function [uat, yuat] = prf3(zpcrs,upfn,incr)
% THIS FXN USES THIRTY-ONE W, 2 VALUES. ONE ATTR PT IS
COMPARED OVER MANY SP VALUES
% ONLY DIFF BTWN 3&4 IS THAT 4 USES LEFT QUADR , 3 USES
FRIGHT QUADR.
% This function takes a pointS (W,Z) from the quadr and
iterates the point n
% -:mes in order to ensure the point is on the Henon
attractor(ensuring •
% that the nth iterate is in the left quadrant). It
initiates a grid field
% based on a certain spacing, then iterates those grid field
points that
% match the binary string of ",wnew,znew) [use (-1,-.25) for
W,Z]. As long as
% the strings match, points are iterated using the Henon 0
reccurrence. Only that
% ýthose) points that completely match are finally
considered.

i = - ,;

for w = .5:.02:1.l % MAJOR OUTER LOOPz= .1;•
ii : ii -÷ i

scllt = .4098;
wattr = w; % This preserves the values of W,Z
zattr = ;
for 1 - 1:40 % ensures wattr,zattr is

wattr(j+l) = 1.0 - 1.4*wattr(j)^2 + zattr(j); % on the 0 0
attractor

zattrj+i) = .3*wattr(j);
if j > 20 & wattr(j+l) > split, break;
end

end
wnew = wattr(j+l);
znew = zattr(jsl);
for sp = spfn:incr:spcrs, % MINOR OUTER LOOP

sp = sp
wattr = wnew;
zattr = znew;

a = (-.1083 -1; -3.64 1; -. 1562 1];
b = [-.2760;-4.6718;-.3344];
c = [split:sp:l.32];
d = [-.6:sp:.5];

ienc = length(c); lend = length(d);
xvec = zeros(l,lenc*lend); yvec = zeros(l,lenc*lend);

if min((a*[w;z]) > b) == 0 1 w < split
disp('initial value is not in right quadr')
return;

end
k=0;
for p : l:lenc

109

0S

0 S 0 0 0 0 0 -9 -- 0

0

for r = l:lend
k=k+l;

% This next section puts everything outside of the quad
to (-10,-i0) 0

if max((a * [c(p);d(r)]) < b) == 0
xvec(k) = c(p); yvecAk) =d(r); i

else
xvec(k) = -10; yvec(k) -10;
end

end 0
end
xvec = reshape(xvec,lenc*lend, l);
yvec = reshape(yvec,lenc*lend,l);

m = find(xvec -= -10 I yvec -= -10);
xvec = xvec(m); yvec = yvec(m);
xx = xvec; yy = yvec; 0
indices = 1:length(xx); % [1 2 3 4

i = 1;
qvec = length(xx);
q = indices;
lenq = length(xx);

while length(q) > 1;
xO = yy + ones(size(yy)) - 1.4*xx.^2;
YO = .3*xx;
wO = znew + 1 - 1.4*wnew.^2;
zO = .3*wnew;

if wo >= split
qtemp = find(xO > split Ix == split); 0 0

else
qtemp = find(xO < split);

end;
if length(qtemp) == 0,break;
else q = qtemp;
end; 0

i = i + 1; % counts iterates where at least
one point matches

qvec = [qvec,length(q)]; % plot of how * with same
binary sequence

lenq = length(q);
indices = indices(q); % decreases each time through loop 0

xx = xO(q); % preserves to next iterate those
matching values of

yy = yO(q); % x0 and yO
wnew = wO;
znew = zO;

end 0
% In this way, we need the index key 'indices' to tell to
which.grid point the
% surviving iterate corresponds with respect to the original
xvec and yvec.
xnew = xvec(indices);

ii0

110

0

ynew = yvec(indices); % now we show a plot of how0
wattr,zattr and the point

xnew~ynew % that generates the same binary sequence

xnew = xew;% walk around the attractor

y-, ew!: = ynew;
wa!:t:r t = .:attr;
za-rt = zattr;
for n = 1:i - 1

x0t = 1.0 - 1.4*xnewt.^2 + ynewt;
v~t = .3*xnewt;
w~t = 1.0 - l.4,wattrt.72 + zattrt;
z~t = .3*wattrt;

wattrt = wOt;
zattrt = zOt;
xnewt = x0t;
ynewt = y~t;

end % END TO MINOR LOOP
nvecl = [nvecl,n];
spvecl = [spvecl,sp];
clear xvec; clear yvec;
end % END TO MAJOR LOOP
nvec2 = [nvec2,nvecl];
spvec2 = [spvec2,spvecl];
end
t~x~s('0 max(sp-.ec2Z, 0 max(nvec2)]);* *

plot (spvec2 ,nvec2, '.')
title('SP VS. ITERATIONS UNTIL DIVERGENCE');

0

% function [xmat, ymat] a prf4(spcrs,epfn,incr) O
% THIS FXN USES THIRTY-ONE W,,Z 'ALUES. ONE ATTR PT 1S
COMPARED OVER MANY SP VALUES
% ONLY DIFF BTWN 3&4 IS THAT 4 USES THE LEFT QUADR, 3 USES 0
THE RG3HT QUADR.
% This function takes thity po~nts(W,Z Zfrom the quad and
iterates the point n
% t7mes in order to ensure the point is on the Henon
attraccr enrsuring
* that the nth iterate is in the left quadrant). It
initiates a grid field
% based on a certain spacing, then iterates those grid field
pzints that
% match the binary string of -wnew,znew) [use (-l,-.25) for

As long as
% the strings match, points are iterated using the Henon
recurrence. O•lv that
% ýthose) points that completely match are finally
ccnsidered.

fcr w : -. 8C:.04:.4 % MAJOR OUTER LOOP

ii l i + 1
split = .4098;
wattr =w; % This preserves the values of W,Z
zattr =z;
for j = 1:40 % ensures

%wattr,zattr is 0 •
wattr j- i) = 1.0 - 1.4*wattr(j)^2 + zattr(j',; % on the

%attractor
zattr(j+!) = .3*wattr(j);

if j 20 & wattr{•, ,l) split, break;
end

end e
wnew = wattr(j+!);
znew = zattr(j-l);
for sp = spfn:incr:spcrs, % MINOR C..UTER LCýCL

sp = sp
wattr = wnew; 0
zattr = znew;

a = [3.4074 1; -. 1083 -1; -. 1562 1];
b = [-4.1119; -. 2760; -. 33441;
c = [-l.32:sp:split];
d = [-.6:sp:.5];

lenc - length(c); lend = length(d);
xvec = zeros(l,lenc*lend) ; yvec = zeros(l,ienc*iend);

if min((a*[w;z]) > b) == 0 1 w > split
disp('initial value is not in left quadr')
return;

end
k=C

112

0

I 0 0 0 0 0 0 0 0S mku m • lma

for p = l:lenc
for r = l:lend

k=k+l;
% This next section puts everything outside of the quad 0

to <-i,-i0)
if max((a [c(p);d(r)]) < b) == 0

xvec(k) c(p); yvec(k) =d(r);
else

xvec(k) -10; yvec(k) = -10;
end 0

end
end
xvec = reshape(xveclenc*lend,l)
yvec = reshape(yvec,lenc*lend,l);

m = find(xvec -= -10 ý yvec -= -10);
xvec = xvec(m); yvec v yvec(m); S
xx = xvec; yy = yvec;
indices = l:length(xx); % [1 2 3 4 .]

i - 1;
qvec = length(xx);

q = indices;
lenq = length(xx); 0

while length(q) > 1;
xO = yy + ones(size(yy)) - 1.4*xx.^2;
yO = .3*xx;
wO = znew + 1 - 1.4*wnew.^2;
zO = .3*wnew;

if wo >= split 0 0
qtemp = find(xO > split I xO == split);

else
qtemp = find(xO < split);

end;
if length(qtemp) == 0,break;
else q = qtemp; 0
end;

i = i + 1; % counts iterates where at leas-
one point matches

qvec = [qvec,length(q)]; % plot of how 4 with same
binary sequence

lenq = length(q); 0
indices = indices(q); % decreases each time through loop

xx = xO(q); % preserves to next iterate those
matching values of

yy = yO(q); % x0 and y0
wnew = wO;
znew = zO; 0

end
% In this way, we need the index key 'indices' to tell to
which grid point the
% surviving iterate corresponds with respect to the original
xvec and vvec.

113

,o • • e • _o ... • , .,,,, ...S

0 II I II III I

xnew =xvec(-ndices);
ynew =vvec~indices); % now we show a plot of how
wattr,-zattir and the point U

% that generates the same binary sequ,-ence 0
e , y new

% walk around the attractor
xrnew't = xnew;
vnewt- = ynew;
wattrt = warttr;

-a:t , = attr;
-for n = 1':i - 1

xt=1.0 - l.4*xnewt.^2 +ynewt;

w~zt = 1.0 - 1.4,wattrt.-2 + zattrt;
zt= .3*wattrt;
wa~t= wot:; 0

za".ttr t z -=
x new~ =- ,t
ynewt- v 0t;

end
n,.'ecl! = [nvecl,n];
spvecl = Ispl.,cl,sp]; 0
clear xv:eo; clear yvec;
end % END TO MLNCR LOOP
n,.ec2 = Vr-vec2,nveclJ
spvec2 = [spvec2,spvecl];
end % END TO MAJOR LOOP
axisic' max~snvec2) 0 max(nvec2)];

plot ~sp-vec2,nvec2, 'w.');
title('SP 'VS. ITERATIONS UNTIL DIVERGENCE');

0

114

% ONTO. M
* THIS PROGRAM REQUIRES THE PROGRAM HEINON TC: RUN PR,7_PER'Y
%This program is a derivative off a pro-gram ,.sed orig-,na X)
* in relference 1-3 called "runs.m".
* Thi~s program is run using the word-ontoC"

rT: rn use "x =her~ncn ,DC then.ueot"
:rthe appropriate r.-tuple sought.
.e no C n ? Cý)C C C, 0, C

=::E zero-s 4,l~

~oe':e~ =zerosý8,l)

zieoveo-4 = eros(.16,1);
*Jec-vec5 = -ero)s'32,

%cio':c6 zeros,64,1ý;
c,,eL zeros 1218,1;,

a4 e '.'ec~ 8 zeros(256,1)

7' -e C_ I ='eros JCZ4,il
=__ - eros(2'048,1);

%deo = - eros(4096,l);
ýi e .,eo(-13 = zeros (8192, 1) ; 0

iiez:-'ecI'4 = zeros'16384,1);
ýýecec_- ='eros(32768,1);

id:ec-.ec 10 = zeros(65536,1)
*:iL-.ec -= eros(l31072,l);

w 1 e T, rn oe cve c4;= 0
- i + 1;

%,de:~rnal 2 11 * x(i-:i-1)l
~oeoeo2dec:.maU.2.) = decvec2(decimal+l'ý + 1;

~dec ima 1=4 2 11]*x (i i -2)
%decv:ec3 1,decimal+l) =decvec3 (decimal+1) -i ;

diecimal=8L 4 2 13*x(i:i+3);
decveo-4,decima1±il) = deCvec4(decimal-1) +1;

idecir'al'=[1 8 42 l]I*x(i:i+4);
~deveodecma1i)= decvec5(decimal~l) 1;

ýieo-imai-T 32 16 8 4 2 ll~x(i:i-.5);
%decvec6(decimal+l) = decvec6(decimal~l) + 1

%decimal=[64 32 16 8 4 2 ll~x(i:i-.6);
%decvec7(deci4ma1±1) = decvec7(decimal+1) +1;

%decimal=[128 64 32 16 8 4 2 11*x(i:i+7);
%decoec8(decimal+l) =decvec8(decimal+1) + 1;

00

%decimal=[256 128 64 32 16 8 4 2 1 1*x(i:i+8);4
%decvec9(decirnal+1) = decvec9(dJecimnal+1) +1;

%decimal=[512 256 128 64 32 16 8 4 2 1J*x~i:i+*9);
%decvecl0(decirnal+1) = decvecl0(decimal-.-) +1;

%decima1=ý1024 512 256 128 64 32 16 8 4 2 l1]x(i:i+1OK;
%decvecl!(decrnai+l) = decveclihdecimal-s1) + 1;

%dec--mal=r2048 1024 512 256 128 64 32 16 8 4 2 1j*xfi:j.-11)
%deczvec-12ýdecirnal+l) = decvecl2(decimal+1) + 1;

%decimal=r4096 2048 1024 512 256 128 64 32 16 8 4 2

%decvecl3(decimal+1) = decvecl3(decimal+1) + 1;

%v='1924096 2048 1024 512 256 128 64 32 16 8 4 21 1';

%decvecl4(decimal+1) = decvecl4(decimal+1) + 1;

%,:=[16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 ILI;
9%decimal= v *x(i:i-.14);
%decveclS(decirnal+1) = decvecl5(decimal±1) +- 1;

%v=[321768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4

%decimal = v *x(i:i-s15);
%decvecl6(decimal+1) = decvecl6(decimal±1) +1;

%%-='65536 32768 16384 8192 4096 2048 1024 512 256 -128 64>;
%decima1=[v 32 16 8 4 2 1] * x(i:i-*16);
%decveco"/de-in'.al+1) = decvecl7(decimal+1) + 1;

end 4

% i tells the sequence length at which all the n-tuples were
"found.

n % n-tuple looking for
i % length of decvec where found
length'x) % total length of original vector from Henon

116

0 40 40 0000 0

%function xx - findllO(n,xO,yO)
% This program requires that plot(xllO,yllO,'.') be used 2
%after the run. This program takes n points on the attractor •
%and finds those that give the sequence 110. It then
%iterates the set 3 times. Merely set the parameters below
%and type "findll0"

n = 5000;
x0 = 0;
y0 = 0;

%inputs:
. n = length of desired sequence

x0 = initial x
yO = initial y

%outputs:
% xx = n by 1 binary vector
hold on;

xýl) = X0;
y11) = y0;

o=linspace(-l.33,!.32,500);
s=-.l083"o + .276;
u=linspace(l.32,1.245,500);
,=3.64*u - 4.6718;
g=linspace(-l.06,1.245,500);
h=.1533*g - .3344; 4
e=linspace(-l.06,-l.33,500);
f=-3.407*e - 4.1119;

split = .4098;
axis([-l.32 1.32 -. 6 .5]);
xline = [split split]; yline = [-1.32 1.32]; •
plot(xline,yline,'w-');hold on;
plotý(o,s,'w.',u,v,'w.',e,f,'w.',g,h,'w.');
title('Exclusion Area of Points which Never Give Sequencell00'1100)

pause;

x(2:n) = zeros(n-l,l); % vectors are preallocated
y(2:n) = zeros(n-1,l);

%recursive generation of points
for i = l:n;

x(i+l) = y(i) + 1 - 1.4*x(i)^2;
y(i~l) = .3 * x(i);

% convert to binary
if x(i) <= split

xx(i) = 0;
else

117

• • • •• • •0

S 0 -0 u n n m 0 0N N .. 4

end xxi)=;d
end

% xx
decvec3 =zeros(8,l);4

i =0;

while min(decvec3) ==0
i =i + 1;
decimal = 14 2 lJ*xx(i:i+2)';

if decimal==6, X110 = Cxll!O,x(i)]
yllo = [yllo,y(i) I;

end
end

% plot (xllo,yllO,'',

0

118

% SUSQUAD
% This program shows how the four sides of the
subquadrilateral
% shift as the sides are iterated 3 times. This ensures that:
any pt.
% falling in the subquad will not give the sequence 110,0.
% To run type "subquad"
xx = linspace(-l.33,l.32,500);
ny = - .1083*xx + .2760;

aa = linspace(l.32,l.245,500);
bb = 3.64*aa - 4.6718;

cc= linspace(-l.06,1.245,500);
dd = .1533*cc - .3344;

0
ee = linspacet-1.06,-l.33,500);

ff= -3.407*ee - 4.1119;

x = linspace) .4099, .5714,500);
y = - .14*x + .2785;

a = l1inspace(.5714,.5273,500);
= l.769*a - .8123;

c = linspace(.5273,.4102,500);
d = - .2673*c + .26145;

e = linspace(.4102, .4099,500);
f = 232.7*e +:95.6;

split = .4098;
xline = [split split];

yline = [-1.32 1.32];

axis([-l.32 1.32 -.6 .5]);
hold on;pl1ot(xline,yline,'g-'); % split
plot(xx,yy,'g.',aa,bb,'g.',cc,dd,'g.',ee,ff,'g.'); %
quadrilateral
plot (x,y, 'w. ',a,b, 'w. ',c,d, 'w. ',e, f, w. ') ; % subq--ad
title('Subquad,Quadrilateral and Split of.4098');
disp('about to print')
print;
pause; clg;
hold off

%while s -0

for iter=l:3

sprintf (Iter=%g , iter)

119

*0 0 0 0 0 AV0

for n =1:500

xO(n)= 1.0 - 1.4*x(n,)'2 + n)
YO(n) = 3*x(n);A
end0

for i =1:500

aO(i) =1.0 - 1.4*a(i)'2 + i)
bO(i) = 3*a(i);
end

% 2
for j =1:500

cO(j)= 1.0 - l.4*c(j)-'2+ j)
dO(j) = .3*c(j);
end

for k =1:5000

eO(k) = 1.0 - 1.4*e(k)^2 + f(k);
fO(k) = .3*e(k);

end

axis(!I-1.32 1.32 -.6 .5]);

%s= s + 1;
%subplot (221);
hold on;plot(xline,yline,'g-'); % split
plot(xx~yy,'g.',aa,bb,'g.',cc,dd,'g.',ee,ff,'g.'); %
quadrilateral
plot (xO,yO, 'w. ',aO,bO, 'w. ',cO,dO, 'w. ',eO, fO, 'w. '); %
iterated subquad
title('Iterated Subquad,Quadrilateral and Split of .4098');
pause;
hold off

%Prepare for next iteration.
x=xO ;y=yO ;a=aO ;b=bO ;c=cO ;d=dO ;e=eO; f=f 0;
% if s==3

print ;cig
end

end;

120

6S
APPEINDX 3: TYPICAL LXFT QUADRILATERAL RUN

The following is a typical run of GRDCOMP6.M which

models which points from the left quadrilateral give the

same binary sequence as a point (W,Z) chosen at random from

the left quadrilateral. The point (W,Z) (+) is indicated

with a long arrow; (u,v) points (x) are indicated with

shorter arrows.

Od FWsM- d Powm am a& Amrm

0

0.4

..o o . .o . .oo . . o o . o

.. o**...,.o...oo...o.o.o...

0.I--**II I* I I *

-1 ... 0 00 1

Figure 55 Typical run left quad model: before iteration

121

:.• imlli mlmi m m ~ i..

-0.4-

* 00.0 0 6

do.m P oa in Grid ,,,• Sam u iaw Sweaw st

0m

..-0.4"

0

SO j 0 0.5

Figure 56 Typical run left quad model: Iterate 1

S*y

Mv4vamga a Pamin~ GnOd wuh S. Su-y~ Sequenc

0.4

0ý0

-0.40

- -0. 0 0.5 L

Figure 57 Typical run left quad model: Iterate 2 0

122

..... 9 0 0 0 0 0 0_ *

0

0-0

-1 0. 0 0.5

Figure 58 Typical run left quad model: Iterate 3

m.4effnu of Pama i Cowi W16 sm= shwy Seque

-0.0

0 O0

Figure 59 Typical run left quad model: Iterate 4

123

WS

-0.0

00

0[0

Figuro 60 Typical run left quad model: Iterate 6

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __12 4

0.0

-0.4-

4 44 0 04

Figure 62 Typical run left quad model: Iterate 7

.oumu of at m Grid wh 5a ommy SuuM I
0.0

0

00

-0.4o,1 /•

-! -0,.5o 0J 0.

Figure 63 Typical run left quad model: Iterate 8 0

125

• • • ._ ,,,,,• , ... •0

* m ' I]1 II INI0. 0 n n0.. .*

0.0
0

-0.4

-- 0.3 0 045 1

Figure 6S Typical run left quad model: Iterate 90

1260

D maceae . of Ge1d FOrn With Sem Slnaeg b A•nAdi ti .)n Va.

0
no313. 0

250

*,200
U

150

so.

0 1 2 3 4 t 6 7 I 9 1O
Iteration

Figure 66 Grid points with same sequence after n
iterations

*

Table 5 shows the count of points for iterates 1 through 10

that give the same binary sequence as (W,Z). At iterate 121

(not shown) there are no grid points that give the same binary

sequence as (W,Z).

0

TABL 5 NUMBER OF POINTS THAT GIVE THE SAME BINARY SEQUENCE

NUMBER OF POINTS THAT GIVE THE SAME BINARY SEQUENCEI

ITERATE 0 1 2 3 4 5 6 7 8 9 10

NO. PTS 314 180 150 18 3

127

0 0------ 0 0 *

0

*04

I1 -Gi 0 0.j

Figure 68 (W,Z) and three (u,v)po Intserior to

-0. . 0

34~m 0 ft Chosm an HA wMan" Sn5qwni ft sumi Dsvwgs

0.4 -PA

-0.4

Figure 69 (W,Z) and three (u,v)'s: Iterate 2 (Notice
that the (u,v) points are essentially superimposed).

M4omaa af Pt Oxmw on HA wA achog Seqinso ft anal Div'erg

0.4

.1 -0-5 00.1

Figure 70 (W,Z) and three (u,v)'s: Iterate 3 (Notice
that the (u,v) points are essentially superimposed).

129

0 0

.04

mtoamne a(ft Chous on RA wA !bMudmq Seuct MCIn Diveqe

0

0

0

-10.5 0 045

Figure 72 (W,Z) and three (u,v)'s: Iterate 4 (Notice
that the (u,v) points are essentially superimposed).

130

0

0 00 0 04 0

a (Pt Cims an RA wd Mm*Aug Sotmee Pt m.. Divwgs

.0.0

-0.40

.1 o. 0 04 1

Figure 73 (WZ) and three (u,v)'s: Iterate 6

W4.wnm~u adPt Chems w HA MMd M4achg $oquse ft mdi Dtwrp

0.0

00

Figure 74 (W,Z) and three (u,v)'s: Iterate 70

131.

00

Movoma oit Pt Cb as HA as Mawbog Soqmasft Pt a Dt"v

4.

0-0

4-Gi 0 0j 0
Figure 75 (W,Z) and three (u,v)'s: Iterate 8

AMMYUMa offt Cbaias RmA &A ,MaUhiag Sequsac Pt mW Diwwrp

0.2-

0-0

.1-0.5 0 0.3 1

Figure 76 (W,Z) and three (u,v)'s: Iterate 9

132

ffimwmhwfiwm0

a a Pt Cm w HA ad 4k=og Sopowa Pt we&i Dtvp I
0.4

0-0

0

0

* •

0

0

133

0 • "

• 0. 0"" °0"0"

APPIIDIX C: 6 TO 16-TUPLL DATA •

This appendix contains the counts of n-tuples for typical

Henon binary sequences for n-tuples of length 6-16.

2 -

0 10 20 30 40 50 60 70

Shifted Decimal Equivalent 4

Figure 78 Incidence of 6-tuples in typical H~non
generated binary sequence

x L00
X 10,
8

--

0 20 40 60 s0 100 120 140 S

Shifted Decimal Equivalent

Figure 79 Incidence of 7-tuples in typical H~non
generated binary sequence

134

9 AD•
0 m u I In 01-~ m m l 0ii

S10"

4

iI I
OL L Ilk• I

o 5o 100 15O 200 250 300
Shifted Decimal Equivalent

Figure 80 Incidence of 8-tuples in typical H~non
generated binary sequence

x 10'
4

0 100 200 300 400 500 600

Shifted Decimal Equivalent

Figure 81 Incidence of 9-tuples in typical H6non 0
generated binary sequence

x 10'

2.5

0 200 400 600 800 1000 1200
Shifted Decimal Equivalent

Figure 82 Incidence of 10-tuples in typical H6non
generated binary sequence

135

S. .. • O0 0............. e .. . , ' e .. , '''

0 0 0 0 0I 4

x 100

1.5-

- 0.5
il

0 5w0 1000 1500 2000 251
Shifted Decinal Equivalent

Figure 83 Incidence of 11-tuples in typical H6non
generated binary sequence

15000

410000

00 500 1000 1500 2000 2500 3000 3500 4000 4Y

Shifted Decimal Zquivalent

Figure 84 Incidence of 12-tuples in typical H6non
generated binary sequence

12000

10000-

.6000-

UI

0 1000 2000 3000 4000 500 6000 7000 8000 9000

Shifted Decimal Equivalent

Figure 85 Incidence of 13-tuples in typical H6non
generated binary sequence 136

136

4
1500

'8h1000

V

U

4 500

00 2000 4000 6000 800 10000 12000 14000 16000 1800
Shifted Decimal Equivalent

Figure 86 Incidence of 14-tuples in typical H~non
generated binary sequence

1500

P,1000

5w
-,A

i
o 0.5 1 1.5 2 2.5 3 3.5

Shifted Decimal Equivalent x 10"

Figure 87 Incidence of 15-tuples in typical H6non
generated binary sequence

2M,"200

V 1500
* 200

150

2 3 4 5 6 7
Shifted Decimal Equivalent x 10

Figure 88 Incidence of 16-tuples in typical H~non
generated binary sequence

137

• • • • • •9•• I -O

0 l llll II0I I l l

0

APPENDIX D: AN UNPRZALLI 1 AELZ 5 -TUPLE
4

As we saw in Chapter IV, just because a particular n-tuple

is not found in a typical string of length i0ý does nroct mean

we will not find it in a typical string of length 10- or

longer. The only way to show that an n-tuple is unrealizable

is to prove it analytically as we have done for the sequence

{1,1,0,0). It is in this Appendix that we prove that the

sequence {0,0,0,0,0} is also unrealizable. This specific 5-

tuple is used in Chapter V in order to support a conclusLun as 0

to why certain sequences are unrealizable.

The sequence (0,0,0,0,0} is one of the four 5-tuples that

appeared to be unrealizable from our daýa in addition to those 0

5-tuples that included the sequence (1,1,0,0). These 5-tuples

appear in Chapter IV Table 4. Consider the 5-tuple

(0,0,0,0,0}. Suppose this binary sequence corresponds to the 0

following sequence of x values: { All

these x values must, therefore, be at most .4098. Referring

to equation (1.3) on page 10 the possible solutions for x.

correspond to the region beneath the inverted parabola in

Figure 89. Similarly, only those x,., and x- terms less than

or equal to .4098 are considered (refer to Figure 90). 0

138

00 9 0 0 0 0

0

-0.5

-1 130051 0

Figure 89 Solution space of points that could give the
sequence (0,0,0,0,0) under x,-, restriction

Ix

0

-:4094

00

.4098

Figure 90 Solution space of points that could give the
sequence (0, 0,0, 0,0) under x,, and x,., restrictions

139

0

0 ---- 0- 0 50 0 0

By containing the trapping region in a rectangle (see

Figure PI.) we see how the possible solution values can be A

further constrained.

Ndw Reamsmat n Enaiuq TR

0.4.
04

0.4

-0.2-S0

-012

-W 0 0 1

Figrure 91 Trapping region in minimum area rectangle

The minimum and maximum x values, for example, are -1.32 and •

1.33. In order to show that a string of five successive zeros

is not possible we consider the recurrence:

X,.3 = 1 - 1.4X,. 2
2 + .3xn. 1 (D.1)

where x, and x, are implicit in the equations. To optimize

our potential of finding a value for x,.3 at most x..=.4098 we

require a maximum x•.2 value and a minimum x,., value. Clearly,

140

x,., can be no less than -1.32. However, x,. 2 is not limited

only by .4098, as we shall see. Consider the equation:

X,.2 = 1 - 1.4x,, 1
2 + .3x,.

To find our desired maximum x.. 2 value, we must use a minimum

value for x, and a maximum value for x,. 1, such that

x,., S 1 - 1.4(.4098)2 + .3(-1.32).

This further constrains xY.2 to a value no greater than

approximately .3689 (see Figure 92). (The value of x,.- to

eight decimal places is .36888954).

0 0

ja 0
seuec (0, 0,0•,0 ne ,,n ,2rsrcin

_|.35 --

.4098
Figurze 92 Solution space of points that could give the
sequence (0,0,0,0,0} under x,. and x.. 2 restrictions 0

141

0

•9 0 0 0 0 0 •

Thus, referring to equation (D.1), the maximum x..- value ,s no

more than .3689 and the minimum xr,. value is -1.32 based on

the confines of the trapping region. It follows that

x , 2! 1 - 1.4(.3689) -. .3(-1.32)

x,.. Ž .41348871 (to eight decimal places).

The value of x.. corresponds to a binary value of I. Thu:

{OO,,O,,0} is not realizable under this symbolic dynarrmics.

0

0

142

0

L 0S0 0 0 0 0

0

APPENDIX 3: SUBORDINATE PROGRAKS

This Appendix includes programs which are necessary but
secondary to the programs in Appendix A. Two of the programs
HENCN and HENREAL) are essential for the proper operati= :f

the APPENDIX A programs. 0

function Ex,y] = henreal(n,x0,y0)
% NOTE: THIS PROGRAM IS REQ'D TO RUN ALL GRDCOMP PROGRAMS
% This program is credited in its entirety to the auth_:r
% reference 13;it has been used by permission.
% program to generate n-length real sequences based on the 0
% H~non
% horseshoe attractor. initial points fit into the
% quadrilateral of convergence described in [Hen76].
%:nputs:
% n = length of desired sequence
% xG = initial x value 0
% yO = initial y value
%outputs:
% x = n by 1 real vector

y = n by 1 real vector

x = zeros(n,l); * •
y = zeros(n,l);
x(1) = X0;
y(l) = yo;
%routine to check if initial points are valid
A=[3.4074 1;-.1083 -1; -3.64 1; -. 1562 11;
B=[-4.!119 -. 2760 -4.6718 -. 3344]'; 0
if min((A*[xO;yO]) > B) == 0

disp('initial point outside convergence zone')
return

end
%recursive generation of points
for i = l:n-l; 0

x(i- l) = y(i) + 1 - 1.4*x(i)V 2;
y(i+l) = .3 * x(i);

end
%plot(x,y, 'b. ');

0

0

143

0

0S00 0 0 0 0 0

% PROSUBOQUAD.M
% PROGRAM REQUIRES H>.MREAL PROGRAM
% This program finds the dynamic probability of a point
falling into the
% exclusion zone compared to being on the rest of the
attractor.
[x,y] = heiireal(100000,0,0);

a = L232.7 1; -. 14 -1; -1.769 1; .2673 1];
b = [95.6 -. 29 -. 8 .25]';

-% = zeros(length(x));

for i = l:length(x);
if min((a*[x(i);y(i)]) > b) == 0 % if outside

subquad :(i) = 1; •

else z(i) 0;
end

end
t = find(z==0);
tt = length(t);

probabilityll0 = tt/'length(x)
pause;
subplot (2,1,1) ,plot (x(t),y(t),'w.')

0

0

144

-- 40

0 0 0 0 0 5 5 0 0

% function [xmat, ymat] a grdcomp5(*p)
% ONLY DIFF BTWN 4&5 IS THAT 4 CHOOSES W,Z FROM THE LEFT

,UAD THEN ENSURES
% THIS POINT IS ON THE ATTRACTOR, 5 CHOOSES FROM THE RIGHT 0
QUAD AT RANDOM
% THEN ENSURES THAT THIS POINT IS ON THE ATTRACTOR.
% This function takes a point(W,Z)from the quadr and
-terates the point n
% times in order to ensure the point is on the Henon
atfractor(ensuring
% -hat the nth iterate is in the left quadrant). It
initiates a grid field
z based on a certain spacing, then iterates those grid field
p•onts that
% match the binary string of (wnew, znew) . As long as
S--he strings match, points are iterated using the Henon

recurrence. Only that
7:hose) points that completely match are finally plotted

according to the
% fcliowing scheme:
% g. original grid field points
% w, original (W,Z)
% gx original xvec,yvec point(s) which matches binary
string of W,Z

fcrmat long
% We also show how W,Z and xvec(indices),yvec(indices)
"walk, to the Henon
% attractor at each iteration (with the attractor on
screen).
o=linspace(-l.33,1.32,500);
s=-.1083*o + .276;
u=linspace(l.32,1.245,500);
v=3.64*u -4.6718; 0
g=linspace(-l.06,l.245,500);
h=.1533*g -. 3344;
e=iinspace(-l.06,-l.33,500);
f=-3.407 *e - 4.1119;

split = .4098;
fpIx = .6314; fply = .1894; •

fp2x = -1.1314; fp2y = -. 3393;
a = [-. 1083 -1;-3.64 1; -. 1562 1];
b = [-. 2760; -4.6718; -. 3344];
c = [split:sp:l.32];
d = [-.6:sp:.5];
[x, y! = henreal(500,-!.0,-.25l);
x.ine = [split split]; yline = [-1.32 1.32];
ienc = length(c); lend = length(d);
xvec = zeros(l,lenc*lend); yvec = zeros(l,lenc*lend);

k=0;
for p = 1:lenc

145

m • l •UU •m •Ii~lmnnamm Immllmllm 0

for r 1 :1end
k =k + 1;

% This next section puts everything outside of the quad to
(-10, -10) 0

if inax((a *[c(p);dr)]) < b) == 0
xvec(k) =c(p); yvec(k)=d(r);

else
xvec(k) =-10; yvec(k) = -10;

end
end

end
xvec =reshape (xvec,lenc*lend,l);
yvec = reshape(yvec,,lenc*lend,1);

mn = find(xvec -= -10 1 yvec -= -10);
xvec = xvec (i);
yvec =yvec(in);

nuin = rand*length(xvec);
index = fix(nuin) + 1;

w = xvec(index);
z = yvec(index);

wattr = w; % This preserves the values of W,Z
zatt~r = z;
for j =1:40%
ensures wattr,zattr is

wattr(j+l) = 1.0 - 1.4*wattr(jW^2 + zattr(j);% on the
attractor 0

zattr(j+l) = .3*wattr(j);
if j > 20 & wattr(j+1) > split, break;
end

end
wnew = wattr(j+l);
znew = zattr(j+1); 0

wattr = wnew;
zattr = znew;

xy = xvec; % preserves the values of
xvec yvec

yy =yvec;

-.xis([-l.32 1.32 -.6 .5]);
indices = :length(xx); % [1 2 3 4 . . .1

i =1;

qvec length(xx);
q =indices;

lenq length(xx)
hold. on;
plot (xvec,yvec, 'g. ',wattr, zattr, 'w+' ,xline,yline, 'w');

plot(o,s,'w.',u,v,'w.',e,f,'w.',g,h,'w.',fplx,fply,'o'fp2x,
fp2y, 'o')

146

0

hold off;4
title('Grid Field and Point Chosen on Attractor');

print;
pause; clg7 0
while length(q) > 1;

axis([-l.32 1.32 -.6 .51);
xO = yy +~ ones(size(yy)) - l.4*xx.7-';
YO = .3*xyx;
wO = znew +1 - l.4*w-new.-2;
z0 = .3*wnew;

if wO >= split
qtemp, = find(xO > split I xO ==split);

else
qtemp, = find(xO < split);

end;
if length(qtemp) == O,break; 0
else q =qtemp;

end;
i = i + 1;% counts iterates where at least

one point matches
qvec =[qvec,length(q)];% plot of how # with same binary

sequence
lenq =length(q)

indices =indices(q); % decreases each time through loop

xx = xO(q); % preserves to next iterate those
matching values of

yy =yO(q); % xOand y0 0
wnew = wO;
znew = z0;

pause;
hold on;

plot (0,s,'w. ',u,v, 'w. ',e, f, 'w. ',g,h, 'w. ' ,fplx, fply, 'o' ,fp2x,
fp2y, 'o')
title('Movement of Points in Grid with Same Binary
Sequence');

print;
pause; clg; hold off; 0

end
axis([l 2 3 41); axis;
vec = (1/2)7^((l:length(qvec))-l);

plot((l:length(qvec))-l,qvec,lr',(l:length(qvec))-1,qvec(l(* 0
vec,'b');
title('Decrease in # of Grid Points with Same Binary
Sequence vs 1/2^n')

print;
pause; clg;

147

% In this way, we need the index key 'indices, to tell to4
which grid point the
% surviving iterate corresponds with respect to the original
xvec and yvec.

axis([-l.32 1.32 -.6 .5]);
hold on;

pclot(xline,yline, 'w' ,x,y, 'b. ',o,s, 'w. ',u~v, 'w. ',e, f, 'w. ',g,h
,'w.');hold on;

plot (xvec(indices) ,yvec(indices) ,'gx' ,wattr, zattr, 'w+');
plot (fplx. fply, 'o' ,fp2x, fp2y, 'o')

title('wattr,zattr & Grid Pt with Same Binary Sequence');
print;

pause;clg;hold off;
xnew = xvec(indices);
ynew = yvec(indices); % now we show a plot of how
wattr,zattr and the point

% that generates the same binary sequence
xnew, ynew

% walk around the attractor
xnewt = xnew;
ynewt = ynew;
wattrt = wattr;
zattrt = zattr;
for n = 1:1 - 1

x~t = 1.0 - 1.4*xnewt.-2 + ynewt;
y~t = .3*xnewt;
wOt = 1.0 - l.4*wattrt.'2 + zattrt;
zOt = .3*wattrt;

wattrt = wOt;
zattrt = zOt;
xnewt =x~t;
ynewt = y~t; 4axis([-l.32 1.32 -.6 .5]);
hold on;

plot(x,y,'b.',xline,yline,'w-',o,s,'w.',u,v,'w.',e,f,'w.',g,
h, 'W.');

plot (fplx, fply, 'o' ,fp2x, fp2y, 'o') ;
plot(xot,yot,'gx'',wt,zot,'w+s-);

titleC'Movement of Pt Chosen on HA and Matching Sequence Pt-
until. Diverge');
print;

pause; clg;
%plot(xot,yot,'ix',wot,zot,'i+');
end
hold off;

0

148

0

S 0 0 0 0 00

% function [zuat, ynat] u grdcon6(sp) I
% ONLY DIFF BTWN 4&6 IS THAT 4 USED WATTR,ZATTR 5 CHOOSES AT
RANDOM FROM
% THE LEFT QUADR THEN FINDS WATTR,ZATTR. 0
% This function takes a point(W,Z) from the quadr and
iterates the point n
% times in order to ensure the point is on the Henon
attractor(ensuring
% that the nth iterate is in the left quadrant). It
initiates a grid field
% based on a certain spacing, then iterates those grid field
points that
% match the binary string of (wnew,znew) . As long as
% the strings match, points are iterated using the Henon
recurrence. Only that
% (those) points that completely match are finally plotted
according to the
% following scheme:
% g. original grid field points
% w÷ original (W,Z)
% gx original xvec,yvec point(s) which matches binary 0
string of W,Z

format long
% We also show how W,Z and xvec(indices),yvec(indices)
"walk" to the Henon
% attractor at each iteration (with the attractor on 0
screen).
o=linspace(-l.33,1.32,500);
s=-.1083*o + :276;
u=linspace(1.32,1.245,500);
v=3.64*u -4.6718;
g=linspace(-l.06,!.245,500);
h=.1533*g -. 3344;
e=linspace(-l.06,-l.33,500);
f=-3.407*e - 4.1119;

split = .4098;
fplx = .6314; fply = .1894;
fp2x = -1.1314; fp2y = -. 3393;

a = [3.4074 1; -. 1083 -1; -. 1562 1];
b = [-4.1119; -. 2760; -. 3344];
c = [-l.32:sp:split];
d = [-.6:sp:.5];
[x, y] = henreal(500,-l.0,-.25);
xline = [split split]; yline = [-1.32 1.32];

lenc = length(c); lend = length(d);
xvec = zeros(l,lenc*lend); yvec = zeros(l,lenc*lend);

k=O;
for p = 1:lenc

for r = 1:lend
k = k + 1;

149

L | m m i l m i m m anmam...

% This next section puts everything outside of the quad to
(-10,-10)

if max((a [c(p);d(r)]) < b) == 0
xvec(k) =c(p); yvec(k)=d(r); 0

else
xvec(k) =-10; yvec(k) = -10;

end
end

end
xvec = reshape(xvec,lenc'lend,l) ; 0
yvec = reshape(yvec,lenc*lend,l);

mn = find(xvec -= -10 1 yvec -= -10);
xvec = xvec(in);
yvec = yvec(in);

nurn = rand*length(xvec); 0
index =fixlnuin) + 1;

w = xvec(index);
z = yvec(index);

wattr = w; % This preserves the values of W,Z
zattr = z
for j = 1:40%
ensures wattr,zattr is

wattr(j+l) = 1.0 - l.4*wattr(jV'2 + zattr(j);% on the
at tractor

zattr(j+l) = .3*wattr(j);
if j > 20 & wattr(j+l) < split, break; 0
end

end
wnew = wattr(j~l);
znew = zattr(j+l);

wattr = wnew;
zattr = znew; 0

xx = xvec; % preserves the values of
xvec & yvec

yy = yvec;

axis([-1.32 1.32 -.6 .5]);
indices =1:length(xx); % [1 2 3 4 . . .] 0

= 1;
qvec = length(xx);

q =indices;

lenq =length(xx)

hold on;
plot(xvec,yvec,'g.',wattr,zattr,'w+',xline,yline, 'w'); 0

plot (o, s, 'w. ',u,v, 'w. ',e, f, w. ',g,h, 'w. ', fplx, fply, 'o , fp2x,
fp2y, '0');

hold off;
title('Grid Field and Point Chosen on Attractor');

150

6

print; 4
pause; cIg;
while length(q) > 1;

axis([-1.32 1.32 -. 6 .5]); •
xO = yy + ones(size(yy)) - 1.4*xx.^2;
yO = .3*xx;
wO = znew + 1 - 1.4*wnew.^2;
z0 = .3"wnew;

if wo >= split 0
qtemp = find(xO > split I xO == split);

else
qtemp = find(xO < split);

end;
if length(qtemp) == O,break;
else q = qtemp; •
end;

i = i + 1; % counts iterates where at least
one point matches

qvec = [qvec,length(q)];% plot of how # with same binary
sequence

lenq = length(q) 0
indices = indices(q); % decreases each time through loop

xx = xO(q); % preserves to next iterate those
matching values of

yy = yO(q); % xO and yO
wnew = wO;
znew = zO; •

pause;
hold on;

plot(xx,yy,,'g.',wOz0,'w+',xline,yline,'w');

plot(o,s,'w.',u,v,'w.',e,f,'w.',g,h,'w.',fplx, fply,'o',fp2x,
fp2y,'o'); ;
title('Movement of Points in Grid with Same Binary
Sequence');

print;
pause; clg; hold off;

end 0
axis([l 2 3 4]); axis;
vec = (I/2).^((l:length(qvec))-l);

plot((l:length(qvec))-l,qvec,lr', (l:length(qvec))-1,qvec(1)*
vec,'b');
title('Decrease in # of Grid Points with Same Binary
Sequence vs l/2^n')

print
pause;clg;
% In this way, we need the index key 'indices' to tell to
which grid point the

151

0

%surviving iterate corresponds with respect to the origin~al

axis((-1.32 1.32 -.6 .51);
hold on;0

plot (xline,yli-ne, 'w' ,x,y, 'b. ',o,s, 'w. ',u~v, 'w. ',e, f, 'w. ',g,b.
, 'w. ') ;

plot (xvec (indices) ,yvec (indices), 'gx' ,wattr, zattr, 'w-');
plot (fplx, fply, 'o' ,fp2x, fp2y, '0');

title('wattr,zattr & Grid Pt with Same Binary Sequence');
print;

pause; clg;
hold off;
xnew = xvec(indices);
ynew = yvec(indic-es); % now we show a plot of how
wattr,zattr and the point 0

% that generates the same binary sequence
xnew, ynew

% walk around the attractor
xnewt = xnew;
ynewt = ynew;

wattrt = wattr;
zattrt = zattr;
for n = 1:i -1

x~t = 1.0 - .4*xnewt."2 + ynewt;
yot. = .3*xnewt;
wOt = 1.0 - l.4*wattrt.^2 zattrt;
z~t = .3*wattrt; 0 0

wattrt = wOt;
zattrt =zOt;
xnewt = x~t;
ynewt = y~t;
axis([-l.32 1.32 -.6 .51);
hold on; 0

plot (x,v. 'Ib. ',xline,yline, 'w-' ,o,s, 'w. ',u,v, 'w. ' e, f,'w. ',
h, 'w.f);

plot (fplx, fply, 'o' ,fp2x, fp2y, '0')
plot (xot,yot, 'gx',wot,zot, 'w+');

title('Movement of Pt Chosen on HA and Matching Sequence Pt S
until Diverge,);
print;

pause; clg;
plot (xot,yot, 'ix' ,wOt, zOt, 'i+'
end
hold off; 0

152

% function (Cmat, ymat] a proof5(spcrsincr,spfn)
% HERE WE USE SPCRS TO CHOOSE A POINT AT RANDOM THEN ENSURE
IT IS ON THE
% ATTRACTOR. IT IS THEN USED AS THE COMPARISON POINT FOR ALL
FURTHER SP VALUES
% ONLY LIFF B11WN 5&6 IS THAT 6 CHOOSES W,Z FROM THE LEFT
QUADR THEN ENSURES
% THIS PnINT IS ON THE ATTRACTOR, 5 CHOOSES FROM THE RIGHTQUADR
% A NEW WATTR,ZATTR ARE FOUND EACH TIME SP CHANGES.

% This function takes a peintCW,Z;from the quadr and
iterates the point n
% times in order to ensure the point is on the Henon
aztractcr(ensuring
% that the nth iterate is in the left quadrant). It
initiates a grid field
% based on a certain spacing, then iterates those grid field
points that
% match the binary string of (wnew, znew). As long as
% the strings match, points are iterated using the Henon
recurrence. Only that
% ýthose) points that completely match are finally
consije eed.

split = .4098;
sp = spcrs;

a = [-. 1083 -1;-3.64 1; -. 1562 1]; *
b = [-. 2760; -4.6718; -. 33441;
c = [split:sp:l.32];
d = [-.6:sp:.5];

lenc = length(c); lend = length(d);
xvec = zeros(l,lend*lenc); yvec = zeros(l,lend*lenc);
k=0;
for p : l:lenc S

for r = !:lend
k=k+l;

if max , a * [c(p);d(r)]) < b) == 0
xvec(k) = c(p); yvec(k)=d(r);

else xvec(k) = -10; yvec(k) = -10; 0

end
end

end
xvec = reshape(xvec,lenc*lend,l);
yvec = reshape(yvec,lenc*lend,i);

m = find(xvec-= -i0 I yvec-= -10);
xvec = xvec(m);
yvec = yvec(m);

num = rand*length(xvec);
index = fix(num) + 1; 0

153

O . • •• ._ I _

w = xec~idex0

z = xvec(index);

wattr = w; % This preserves the values of
w, z0
zattr = Z
for j = 1:40

%ensures wattr~zattr is
wattr(j~l) = 1.0 - 1.4*wattr(j)V2 + zattr(j);% on the

at tractor
zattr(j+1) = .3*wattr(j);

if j > 20 & wattr(3+1) > split, break;
end

end
wnew = wattr(j+1);
znew = zattr(j-i-);

for sp = spfn:incr:spcrs, % MAJOR OUTER LOOP
sp = SP

a = 1-.1083 -1;-3.64 1; -.1562 1];
b = [-.2760; -4.6718; -.3344];
c = [split:sp:1.32];
d = [-.6:sp:.5];

lenc = length(c); lend =length(d);
xvec = zeros(1,lend*lenc); yvec = zeros(1,lend*lenc);
k=0;
for p =1:lenc

for r = 1:lend
k=k+l;

if rnax(a *[c(p);d(r)]) < b) == 00 0
xvec(k) c(p); yvec(k)=d(r);

else
xvec(k) =-10; yvec(k) -10;

end
end

xvec= rehapexve~len~len~l0
xvec = reshape(xvec,lenc*lend,1);

mn = find(xvec-= -10 1 yvec-= -10);
xvec = xvec(m);
yvec = yvec(m);

wattr = wnew;
zattr = znew;

xx = xvec; % preserves the values of
xvec & yvec

yy = yvec;
indices =1:length(xx); % [1 2 3 4 . . .1

i 1;
qvec = ength(xx);

q =indices;

lenqvec =length(xx);

while length(q) > 1;

154

xO = yy + ones(size(yy)) - 1.4*xx.^2;
yO = .3*xx;
wO = znew + 1 - 1.4*wnew.^2;--0 = .3*wnew; 0

if wO >= split
qtemp = find(xO > split Ix0 == split);

else
qtemp = find(xO < split);

end;
if length(qtemp) == 0,break;
else q = qtemp;
end;
= i + 1;%counts iterates where Ž one point matches

qvec = [qvec,length(q)];% plot of how # with same binary
sequence

lenq = length(q); 0
indices = indices(q); % decreases each time through loop

xx = xO(q); % preserves to next iterate those
ma:ching values of

yy = y0(q); % x0 and y0
wnew = wO;
znew = 7n;

end
% in this way, we need the index key 'indices' to tell to
which grid point the
% surviving iterate corresponds with respect to the original
xvec and yvec.

xnew = xvec(indices);
ynew = yvec(indices);

xnewt = xnew;
ynewt = ynew;

wattrt = wattr;
zattrt = zattr;
for n = l:i -1 1

xOt = 1.0 - 1.4*xnewt.^2 + ynewt;
yOt = .3*xnewt;
wOt = 1.0 - 1.4*wattrt.^2 + zattrt;
zOt = .3*wattrt;

wattrt = wOt;
zattrt = zOt;
xnewt = x0t;
ynewt = y0t;

end
nvec = [nvec,n];
spvec = [spvec,sp];
clear xvec; clear yvec;
end % END TO MAJOR OUTER LOCP
axis;

plot(spvec,nvec, w*,)
title('SP VS. ITERATIONS UNTIL DIVERGENCE');

155

00 0 0 0 *

% function (Cat, yuat] = proof6(spcrs,incr,spfn)
* HERE WE USE SPCRS TO FIND A PNT THEN ENSURE T IS 'N THE
ATTRACTCR.
% THIS PITNT IS THEN USED AS A COMPARISON POINT FOR MANY S- 0
"._ALES.
% ONLY -IFF B74N 4&6 IS THAT 4 USED WATTRZATTR 6 CHOOSES AT
RAN-DM FROM
i THE TEFT QUADR THEN FINDS WATTR,ZATTR.
*n-n:is frnction takes a point W,Zlfrom the quadr and
Iterates the point n
% times in order to ensure the point is on the Henon
a'trastor ensuring
i -hat the nth iterate is in the left quadrant). It
.n=it'ates a grid field
% based on a certain spacing, then iterates those grid field
pcints that
% match the binary siring of (wnew,znew). As long as
Sthe strings match, points are iterated using the Henon
recu'rrence. Only that
% those) points that completely match are finally
considered.
spl•t = .4098; 0

sp = spcrs;
a = [3.4074 1; -. 1083 -1; -. 1562 1];
b = 1-4.1119; -. 2760; -. 3344];
c = [-l.32:sp:split];
d = [-.6:sp:.5];

lenc : lengthc); lend = length(d); S 0
xvec = :eros(l,lend*lenc); yvec = zeros(l,lenc*lend);

for p =!:ienc
for r = !:lend

k=k~l;
if max((a * [c(p);d(r)]) < b) := 0

xvec(k) = cp); yvec(k•=d(r);
else

xvec(k) = -10; yvec(k) -10;
end

end
end

xve= = reshape(xvec,lenc*lend,l);
yvec = reshape(yvec,lenc*lend,l ;

m = find(xvec-= -10 I yvec-= -10);
xvec = xvec(m);

Sc = yvec~m);

num = rand*length(xvec);
index = fix~num) + 1;

w = xvec(index);
z = yvec(index);

156

____ • • •..... . • • 9 _ O_

wattr = W; % This preserves the values of w,Z
zattr = z;
for j = 1:40
%ensures -..attr, zattr is

wattrý'3*l) = 1.0 - 1.4-wattrýjV-2 ,zalttrj,;% orthe
attractor

za'ttrni-l) = .3*wattr~jr;
if J .> 20 & wattrj_-,l1 < split, break;
end

end
wnew = wattr(j-I)2;
znew = zattr(j-.-l;

ftcr sp = spfn:incr:spcrs, % MAJOR OUTER LCV'CP
SP = SP

a = [3.4074 1; -.1083 -1; -.1562 1];
b = [-4.1119; - 2760; -.3344];

d =[.6:sp:.5];

leno = length(c); lend = length(d);
x, ec = :eros(1,lend*lenc); yvec = zeros(l,lenc*lend);
k=0;
for p = l:lenc

for r = l:lend

if rnax((a *[c(p);d(r)]) < b) == 0
xvec(k) =c~p); yvec(k)=d(r);

else* *
xvec(k) =-10; yvec(k) -10;

end
end

end
xvec = reshape(xvec,lenc*lend,l);
yvec = reshape(yvec,lenc*lend,1);0

mn = find(xvec-= -10 1 yvec-= -10);
xvec = xvec(m);
yvec = yvec (in)
wattr = wnew;
zattr = znew;

xx = xvec; % preserves the
values of xvec & yvec

yy = yvec;
indices = :length(xx); % [1 21 3 4 . . .1

i =1;

qvec =length(xx);

q =indices;0

lenqvec =length(xx);

while length(q) > 1;
xO = yy + ones(size(yy)) -1.4*xx.72;

YO = .*x
wO = znew +1 - 1.4*wnew.72;
zO = .3*wnew~;0

157

0

0 0_0 0 -0 0

u0

if wO >= split
qtemp = find x0 , split ix == split);

else
qtemp = find x0 < split); 0

end;
if length(qtemp) == 0,break;
else q = qtemp;
end;

i = i 1; % counts iterates where at
"!east one point matches 0

qvec = [qvec,length(q)]; % plot of how # with same b-nary
sequence

lenq = length(q);
indices = indices(q); % decreases each time through loop

xx = xO(q); % preserves to next iterate thcse
matching values of 0

yy = y0Cq); % xO and y0
wnew = wO;
zhew = z0;

end
% In this way, we need the index key 'indices' to tell to
which grid point the 0
% surviving iterate corresponds with respect to the original
xvec and yvec.

xnew = xvec(indices);
ynew = yvec(indices);

xnewt = xnew;
ynewt = ynew; 0

wattrt = wattr;
zattrt = zattr;
for n = l:i - 1

x0t = 1.0 - 1.4*xr.ewt.^2 + ynewt;
y0t = .3*xnewt;
wOt = 1.0 - 1.4*wattrt.^2 + zattrt; 0
zOt = . 3 *wattrt;

wattrt = wOt;
zattrz = zOt;
xnewt = x0t;
ynewt = y0t;

end 0
nvec = [nvec,n];
spvec = [spvec,sp];
clear xvec;clear yvec;
end % END TO MAJOR LOOP
axis;

plot(spvec,nvec, 'w*') 0
title('SP VS. ITERATIONS UNIIL DIVERGENCE');

158

• • • • •0

function x - henon(n,xO,yO)
% This program is credited to -ne author of reference 13; it
% has been used by permission.
%function x = henon~n,x0,y0)
%program to generate n-length binary sequences based on the
%H~non
*hcrseshoee attractor. inrtiai points are checked %against

%quadrilateral of converge.ce. ýH<nc r1976)
%inputs:

n = length of desired sequence
xO = initial x value
yO = initial y value

x = n by I binary vector

xl = xO;
v : 1= yo;
spli - .4098; %median x-value of henon attractor

t. check if initial points are valid 0
13.4<74 1;-.1083 -1; -3.64 1; -. 1562 1>

EB= -4.ii!9 -. 2760 -4.6718 -. 3344]';
I f Min,.' *A[[x0;y0]) > B) == 0

disp('initial point outside convergence zone')
return

x 2:n) = zerosln-!,1); %vectors are preallocated here to

%save time
y2:n) zeros(n-l,l); %in case initial point -s outside

%of zone

%recu'-rcse generation of points
for i = l:n;

x(i+l) = y(i) + 1 - 1.4*x(i)^2;
y(i+l) = .3 * x(i);

%convert previous point to binary
if x(i) <= split

x(i) = 0;
else

x(ie = 1;
end

end
%minor housekeeping to dump the last term
x = x(l:n);

159

AL-.

LIST OF RIFRRUNCIS 0

I. Gulick,D., Encounters With Chacs, McGraw-Hill, Inc.,
1992.

2. Holden,A.V., Chaos, p.19, Princeton University Press,
1986.

3. Barnsley,M.F., and Demko,S.G., Chaotic Dynamics and
Fractals, v.2, p.102, Academic Press, Inc., 1986.

4. CipraB.A., "Two Mathematicians Prove A Strange
Theorem", SIAM News, v.24, no.3, pp.1,7,9, May 1991.

5. Peitgen,H., Jurgens,H., and Saupe,D., Chaos and
Fractals: New Frontiers of Science, Springer-Verlag,
1992.

6. Stewart,I., Does God Play Dice? The Mathematics of
Chaos, p.162, Basil Blackwell Inc., 1992.

7. 1Hnon,M., "A two dimensional mapping with a strange
attractor", Communications in Mathematical Physics,
v.50, pp.69-77, 1976.

8. Devaney,R.L., An Introduction to Chaotic Dynamical
Systems, Second Edition, Addison-Wesley Publishing Co,
Inc., 1989.

0
9. Guckenheimer,J., and Holmes,P., Nonlinear Oscillaticns,

Dynamical Systems, and Bifurcations of Vector Fields,
p.251, Springer-Verlag New York Inc., 1983.

10. Arrowsmith,D.K., and Place,C.M., An Introduction to
Dynamical Systems, p.2,351-352, Cambridge University S
Press, 1991.

11. Bowen,R., On Axiom A Diffeomcrphisms. Conference Board
of the Mathematical Sciences Regional Conference Series
In Mathematics, v.35, AMS Publications, 1978.

12. Forr6,R., "The H~non Attractor as a Keystream
Generator", preprint, 1990.

160

0

13. Heyman,J.E., On The Use of Chaotic Dynamical Systems to
Generate Pseudorandom Bitstreams, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1993.

14. Benedicks,M., and Carleson, L., The Dynamics of the
Henon Map, Annals of Mathematics, v.133, pp.73-169,
1991.

15. Chow,S. and Palmer,K.J., "The Accuracy of Numerically
Computed Orbits of Dynamical Systems in R'", Journal cf 0
--ynamics and Differential Equations, v.3, no.3, pp.39-
45, 1991.

16. Naval Postgraduate School Report NPS-MA-93-015, Chaotic
Keystream Generators for Additive Stream Ciphers, by
Jeffery J. Leader, 6 May 1993.

Professor Shui-Nee Chow, Georgia Institute of
Technology, Subject: Requirement for Hyperbolic Set in
H4non Attractor using Classical Parameters,
171400ZMay93.

18. Naval Postgraduate School Report NPS-MA-93-016, Neural
Network Identification of Keystream Generators, by James
Heyman and Jeffery J. Leader, 24 May 1993.

19. Beaver,P.F., Fractals and Chaos, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1991. 0

21. Bernhard,M.A., Introduction to Chaotic Dynamical
Systems, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1991.

161

O O • 9 • __•.•

S. . .• - ln • li0 0 ll il0 , •n• •.

r0

INITIAL DISTRIBUTION LIST 0

No. Copies
I. Defense Technical Information Center 2

Cameron Station
Alexandria VA 22304-6145 0

2. Library, Code 052 2
Naval Postgraduate School
Monterey CA 93943-5002

3. Professor R. Franke, Code MA/Fe
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor J. Leader, Code MA/Le 5
Department of Mathematics 0
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor I. Fischer 3
Department of Mathematics
Van Vleck Hall 0
University of Wisconsin
Madison, WI 53706

6. LT Antonio Fontana
1290 5TH Street APT 1
Monterey, CA 93940 •

7. LT James Heyman
PSC 825
P.O. Box 58
FPO AE 09627

8. Professor M. Stamp
Mathematical Sciences
Worcester Polytechnic Institute
100 Institute Rd.
Worcester, MA 01609-2280

9. LT Marion Holmes
3306 Del Monte Blvd. Apt. 62
Marina,CA 93933

162

S.... .. • • •• m O O•0

